• • •	Review of basic ideas of rep. Theory.
• • •	Regular representation. GxG
• • •	$(g_1, g_2) \longrightarrow L(g_1) R(g_2^{-1})$
· · · ·	$(\mathfrak{z}_1,\mathfrak{z}_2)\mathfrak{x} = \mathfrak{z}_1\mathfrak{x}\mathfrak{z}_2^{-1} \qquad \qquad$
· · ·	n_{JW} consoler L&R: $G \longrightarrow GL(R_{G})$
• • •	> restrict to subgroups G x (1) or (1) x G.
• • •	LRR: L(g) $x = gx$ RRR: R(g) $x = x g^{-1}$
· · ·	$L(h) \cdot \chi = L(h) \sum \chi(g) \cdot g = \sum \chi(g)(hg) = \sum \chi(h^{-1}g) \cdot g$
• • •	$ = \frac{2}{5} [L(N) \times J(S) \cdot S] $
• • •	View X also as functions on G. X. G> C.
• • •	$= \int f(r) dr = dr (r_{-1}d)$
• • •	$([R(h) \cdot \chi](g) = \chi(g \cdot h))$
• • •	Define inner product
• • •	$\langle x, y \rangle = \int_{\mathcal{L}} \overline{\chi(g)} y(g) dg$
• • •	finite_1 = x(g) y(g) (G) g

=> 2 L(h) x, L(h) y > = <x. y=""> unitary heps</x.>	•
We will use Lihr. h. Sn etc. Mechangesby	•
$h = \Sigma h(B) \cdot g = 1 \cdot h$ $\implies h(B) = \int \Delta B = h$	•
- d 11 11	•
(recover Oh from Defore)	•
$\zeta \zeta = \Sigma (T \Sigma (I) \Sigma (a^{-1} + 1) + a + a) = \Sigma$	•
$\partial_h \partial_f = 2(2 O_h (1) O_g (1 - 1)) - 1 - (hf) = Ohg$	•
l = h	•
	•
see has left L(h) Dg(d)= D(h &) = Dhg (&) action:	•
LUDSg = Shg	•
· · · · · · · · · · · · · · · · · · ·	•
group elements can be viewed both as	•
speranors and vectors on Re	•
	•
Also expand the class function on Ref.	•
Also expand the class function on R_{e_i} : S (8) = S 4 geCi	•
Also expand the class function on R_{et} : $S_{ci}(8) = \int_{0}^{4} \frac{4}{2} e^{ci}$ otherwise	。 。 。 。
Also expand the class function on R_{4} : $S_{c_{i}}(8) = \int_{0}^{4} d \theta \in C_{i}$ $S_{c_{i}}(8) = \int_{0}^{4} d \theta \in C_{i}$ $\delta = \Sigma S_{c_{i}}(8) \cdot \theta = \Sigma \theta$	· · · ·
Also expand the class function on R_{4} : $S_{ci}(8) = \int_{0}^{\infty} \Delta = \mathcal{J} \mathcal{E} \mathcal{C} i$ $S_{ci}(8) \cdot \mathcal{J} = \int_{0}^{\infty} \mathcal{J} \mathcal{L} i$ with $S_{ci} = \sum S_{ci}(8) \cdot \mathcal{J} = \sum \mathcal{J} \mathcal{J} i$ $\mathcal{J}_{ci} = \mathcal{J} \mathcal{J} \mathcal{L} i$	
Also expand the class function on R_{4} : $S_{c_{i}}(\theta) = \int_{0}^{\infty} \frac{d}{\partial \theta} \frac{\partial \theta}{\partial \theta} C_{i}$ $S_{c_{i}} = \sum S_{c_{i}}(\theta) \cdot \theta = \sum \theta$ $\frac{\partial \theta}{\partial \theta} C_{i}$ $\frac{\partial \theta}{\partial \theta} C_{i}$ $\frac{\partial \theta}{\partial \theta} C_{i}$ $\frac{\partial \theta}{\partial \theta} C_{i}$ $\frac{\partial \theta}{\partial \theta} C_{i}$	
Also expand the class function on R_{4} : $S_{C_{i}}(B) = \begin{cases} \Delta & \beta \in C_{i} \\ D & \text{otherwise} \end{cases}$ $S_{C_{i}} = \sum S_{C_{i}}(B) \cdot \delta = \sum \delta \\ \theta \in G & \theta \in C_{i} \end{cases}$ (or view as class operators C_{i}) $\forall h \in G$, $h \in h^{-1} = \sum h \beta \cdot h^{-1} = \sum \delta' = C_{i}$ Ci commutes with $\forall h \in C$	· · · · · · · · · · · · · · · · · · ·
Also expand the class function on R_{4} : $S_{C_{i}}(8) = \int \Delta g \in C_{i}$ $S_{C_{i}}(8) = \int \partial \partial the with$ $S_{C_{i}} = \sum S_{C_{i}}(8) \cdot 8 = \sum g$ $g \in C_{i}$ $g \in C_$	

8.13.2.	Projectors onto invariant subspaces
· · · · · · ·	$= \bigoplus_{i} W^{i}$ invariant subspace.
Sup	$pose. V = W \oplus W^{\perp}$
Pe	fine projector P anto W.
. .	$x \in V$ $x = w + w^{\perp}$ $w \in W$ $w^{\perp} \in W^{\perp}$
the	$2n P = \omega \qquad = \omega \qquad = \psi \in W$
Afee:	$g(P_{\pi}) = g \omega = P(g \omega) = Pg(\omega + \omega^{\perp}) = Pg \times$
	=> gP=Pg Palso communes with tgEG.
	$D_{1} = \sum \gamma(g_{1}, p_{1}) = \sum \gamma(g_{1}) + p_{2} = \gamma p_{1}$
v∧⊂K _G ;	
Define	e'= Pe: e'= PePe= Pe=e' idenpotent
then t	the invariant subspace is defined as
• • • • •	$W = \Im x e' : x \in R_G $ =: $R_G \cdot e'$
• • • • •	{Px . ∀xeRg]
· · · · · · · ·	$P_{1} + P_{2} = 1 = e = 1e = (P_{1} + P_{2})e = e_{1} + e_{2}$
· · · · ·	$P_1 P_2 = P = P_2 e_2 = 0$
ំ រ	reps: e' is primitive can not be decomposed iron o' + 0.' (0' + 0. 0.' + 0
Borth C	i and P commutes with YZER. is it possible to A
· · · · · · · · · · · · · · · · · · ·	s' onto irreps using Ci?

8.13.5	Construction of character table
Wei	le seen a few character tables for simple groups.
But	how do we construct the character tables?
We	present an algorithm to obtain them.
J-f	we can find all the projectors onto irreps, of
• • •	equivalently all the idempotents.
Some	ideas:
0 0 0	Recall previously a Hamiltonion H is an
• • •	[
0 0 0	$H_1(G) J = 0$
• • •	The expenses sy & span an invariant subspace Wood
• • •	the representation apprese L'Con
• • •	
• • •	$\mathcal{F}_{\mathcal{I}} = \mathcal{F}_{\mathcal{I}} = \mathcal{F}_{\mathcal{I}} \mathcal{F}_{\mathcal{I}}$
• • •	$H T \mathcal{B} \mathcal{H} \mu = T \mathcal{B} \mathcal{H} \mathcal{H} \mu = E_{\mu} T \mathcal{B} \mathcal{H} \mathcal{H} \mu \qquad \forall \mathcal{B} \mathcal{C} \mathcal{C}$
• • •	TBD & GW. (USEG) => W is an invariant subspace,
• • •	i.e. a representation space
• • •	
• • •	$V \cong \mathfrak{S} \mathfrak{S} \mathfrak{S} \mathfrak{S} \mathfrak{S} \mathfrak{S} \mathfrak{S} \mathfrak{S}$
• • •	If W ^r is still reducible, find another
• • •	
• • •	operator that sotiefies [D. TOJ=0 (UJEG)

With a complete set of communing operators (CSCO), we can achieve a complete reduction of representations / find all irreps This is an idea explored systematically by 陈金庄 (南大). D 陈金庄 (新教子 他的新建行 >> Group representation theory @ English translation: for physicists . 2nd. Ed. World Scientific, 2002. The representation group and its (3) application to space groups RAP 57, 211 (1885) First RMP of PRC To illusate the idea, consider a finite group G. With I conjugacy classes [Ci] (i=1...r) [[Ci]] = m:. Correspondingly. I imps V" and characters Xp

What operator commutes with all elements of RG
The center of the group algebra ZIRGJ
is spanned by the class operators / functions
$\forall x \in Z(R_G)$: $x g x^{\dagger} = j$ Then have the following $T = j$
They name the product properties:
\mathbb{D} $\forall h \in \mathcal{G}$. \mathbb{L} C_{i} , $h = 2$; $h = 2$; $h = 2$; $h = 4$; $h = -2$; h
@ ∀i,j [ci.cj]=0 : because of O
O closed/complete: CiCj = Z, Cij Ck, (Cij = CjiEN) where
Cij the class multiplication coefficient, somethy we can
easily compute glien à group.
$\frac{Prref}{Prref}: \forall \ h_{i_1}. \ h_{i_2} \in Ci \ \exists g' \in G_{\epsilon}, \ s.t \ h_{i_1} = \partial h_{i_2} \partial$
$\Sigma \mathcal{F} h_{i} \mathcal{F}^{-1} = \Sigma \mathcal{F} (\mathcal{F}' h_{i2} \mathcal{F}'^{-1}) \mathcal{F} = \mathcal{F} \mathcal{F} h_{i2} \mathcal{F}^{-1}$ $\mathcal{F} = \mathcal{F} \mathcal{F} h_{i2} \mathcal{F}^{-1} \mathcal{F}$
$m_{i} = C_{i} \implies \sum_{\substack{g \in G \\ g \in G}} Z_{i} g^{-1} = m_{i} Z_{i} g^{-1} g_{ia} g^{-1},$
$\exists a \in C_i$ $: : @ LHS = G C_i$ $: : : : : : : : @ LHS = G C_i$ $: : : : : : : : : @ LHS = G C_i$: : : : : : : : : : : : : : : : : : :
The element on 145 then R. I along a Dure
$\Phi \Rightarrow cic_i = \frac{1}{ c_i } \sum f(c_i c_i) f^{T}$
Any & E Ci Cj, belongs to some Ck, then RHS contains full Ck
$\Rightarrow \left(\begin{array}{c} \overline{Ci} C_{j} = \sum_{k=1}^{r} C_{ij}^{k} C_{k} \\ K = 4 \end{array} \right) \qquad (*)$

Should they be enough for finding all irreps of ce group? <u>Some arguments</u>: we've mentioned before that [Sci] is a complete basis for L'(G) class, 3= is \$7µ5.) If we can diagonalize some /all ci's. and de compose them into projectors / find idempotents From an algebraic point of view. Eq. (*) provided us with a set of eigen problems. $\hat{C}_i S_{C_j} = \sum_{k=1}^{j} [C']_{jk} S_{C_k}$ with ESC: 5 an orthogonal basis: of class algebra (recall inner product $\langle S_{C_j}, S_{C_k} \rangle = \frac{1}{|G|} \sum_{g} G_{C_j}(\delta) S_{C_k}(\delta) = \frac{m_j}{|G|} S_{jk}$) Suppose for \hat{c} we find its eigenvectors $\varphi \overset{\mu}{\varphi}$ $\hat{c}_{i} \phi \overset{\mu}{\varphi} = \lambda_{i}^{\mu} \phi^{\mu}$ $\lambda^{\mu} = \lambda^{\nu}, \text{ or } \phi^{\mu} \phi^{\nu} = \lambda^{\nu} (\phi^{\mu} \phi^{\nu}) = \lambda^{\nu} (\phi^{\mu} \phi^{\nu}), \text{ i.e. } \phi^{\mu} \phi^{\nu} \text{ is also}$ then $\hat{c}_{i} (\phi^{\mu} \phi^{\nu}) = \lambda_{i}^{\mu} (\phi^{\mu} \phi^{\nu}) = \lambda^{\nu} (\phi^{\mu} \phi^{\nu}), \text{ i.e. } \phi^{\mu} \phi^{\nu} \text{ is also}$ an eigen vector associated to λ_i^t . Assuming λ_i^t is nondegenerate (fćisa then \$ \$\$\$\$ = dy Squ \$, dy some constant & C. Define Pr= dripr, Pr Pr= Spr Pr. Pres are the primitive idempotents of Ra. > projectors onto and $C_i = \sum_{\mu a} \lambda_i^{\mu} p^{\mu}$ is actually a linear combination of projectors onto irreps.

What if there is dependency? Find another
Ci that splits the degeneracy.
With a complete set of community speractors ((S (S)
one can uniquelly determine the Pt's.
· Note that when restricted to a specific irrep.
$C_{i}^{\mu} = \lambda_{i}^{\mu} \cdot 1_{V} \mu$
We can also obtain λ_i^{μ} by hoticing.
$(X(c:) = \mathbb{Z} \ X(g) = Mi X(LC:J)$
Cid 4un
$=) c_{i}^{(\mu)} = \frac{m_{i}}{n_{\mu}} \chi([c_{i}]) \cdot I_{V} \mu \qquad (n_{\mu} = d_{i} m_{V} \mu)$
i.e. $\lambda_{i}^{\mu} = \frac{m_{i}}{n_{\mu}} \chi_{\mu}(CCiJ)$ remaining two unknowns. N_{μ}, χ_{μ}
$\frac{1}{ G_1 } \sum_{C_1} m_i \chi_{\mu}(G_1) \overline{\chi_{\nu}(G_1)} = S_{\mu\nu} \implies \frac{1}{ G_1 } \sum_{C_1} m_i \chi_i^{\mu} \overline{\chi_i} = S_{\mu\nu} \left(\frac{m_i}{n_{\mu}}\right)^2$
$n_{\mu} = \frac{m_{i}}{\sqrt{\langle \lambda_{i}^{\mu}, \lambda_{i}^{\mu} \rangle}} = \langle \lambda_{i}^{\mu}, \lambda_{i}^{\mu} \rangle$
$\chi_{\mu} = \frac{\lambda i}{\sqrt{\zeta \lambda_{i}^{h}, \lambda_{i}^{h}}},$
How to find a minimal CS Co -> 7# 2 2
be will use a possibly over complete " set:
There are in total & linearly independent

$C_{i}^{(r)} = \frac{m_{i}}{n_{\mu}} \chi_{\mu}([C_{i}]) \mathcal{I}_{\nu}r \qquad \qquad$	$\sum_{\mu}^{n_j} \chi_{\mu}([C_j]) = \sum_{k=1}^{r_j} C_{ij}^k \frac{m_k}{n_{\mu}}$	$X_{\mu}(\mathbb{C}_{k}])$
$m_i \chi_{\mu}(CCD) m_j \chi$	$r_{\mu}(LC_{j}) = n_{\mu} \sum_{k=1}^{r} C_{ij}^{k} m_{l}$	$e \lambda_{\mu}(\mathcal{IC}_{k}])$
Now introduce a se	t of auxiliary var tiate between differen	vablesfy ⁱ , i=1,,r} ent. Ci's. Ci → Ciyi)
ZLHS: ŹmimjX([C;	$J) X_{\mu} (IC_{j}) Y^{i} = \sum_{i=1}^{L} (Y_{i}) Y^{i} = \sum$	4 ⁱ)4; (4:=miλμ ^[Ci])
ZRHS: Znp ZCk iy ky	$\sum_{ij}^{2} n_{k} \chi_{\mu}(\mathcal{L}(x_{ij})) y^{i} = n_{\mu}$	$a \stackrel{k}{\underset{k=1}{2}} L^{k}_{j} \Psi_{k}$
$D_{cfine} \mathcal{N} = -$	$\frac{1}{nr} = \frac{r}{r^2} + \frac{r}{r} + \frac{r}{r} + \frac{r}{r}$	$\left(L_{j}^{k} = \sum_{i} C_{j}^{k} y^{i}\right)$
$\implies \sum_{k=1}^{r} L_{j}^{k} \Psi_{k} =$	$\lambda \varphi_j$	· · · · · · · · · · · · · ·
Solving the eog	en problem (L-λ	(4) (4) = 2
(\neq) $\lambda \mu = \frac{1}{n_{\mu}}$	u set of eigen value Σ m: χμ([Ci]) y ⁱ	es { } µ] µ=1,,r
Note if we set	y ^j = 5 _{ij} , we recove	r our earlier λ_i^{μ} .
· · · · · · · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · ·

Now recall the orthogonality relation:
$\frac{1}{1G_{1}} \sum_{C_{1}} m: \chi_{\mu}(C_{1}) \overline{\chi_{\nu}(C_{1})} = S_{\mu\nu} (ortho. of rous)$
$\sum_{i=1}^{\mu=\nu} \sum_{i=1}^{r} m_i \left[\chi_{\mu}(iC_i7) \right]^2 = G $
$ \mathcal{B}_{t} = \chi_{\mu}(\mathbb{C}(\mathcal{C}_{1})) ^{2} \sum_{i=1}^{t} m_{i} \left \frac{\chi_{\mu}(\mathbb{C}(\mathcal{C}_{1}))}{\chi_{\mu}(\mathbb{C}(\mathcal{C}_{1}))} \right ^{2}$
$= n_{\mu}^{2} \sum_{i=1}^{r} m_{i} \left \frac{\chi_{\mu}(L(i))}{n_{\mu}} \right ^{2}$
$\Rightarrow n_{\mu} = \left[\frac{ G }{\int_{C_{1}}^{C_{1}} m_{\mu} \left[\frac{\chi_{\mu}(C_{1})}{N_{\mu}} \right]^{2}} \right]^{\frac{1}{2}}$
known from above (*)
Implementation in practice:
S_3 , E_j (12),(13), (23); (123), (132)
O class operators: C1-E
$C_{2} = (12) + (13) + (23) \qquad (12)(13) = (432)$ $C_{2} = (123) + (132) \qquad (12)(123) = (1)(13)$
(2) cless multiplication table.
C, C ₂ C ₃ Dexplain Underfined
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

• •	Uj ^k = Z C ^k y ⁱ 3×3 matrix
• •	$L_{1}^{\prime} = C_{11}^{\prime} y^{1} + C_{21}^{\prime} y^{2} + C_{31}^{\prime} y^{3} = y^{1} + o + o$
• •	$L_{i}^{a} = \frac{1}{i}C_{i}^{a}y^{i} = y^{2}$
• •	$L_{1}^{3} = Y^{2}$ $L_{1}^{1} = \sum C_{1}^{1} Y^{1} = 3Y^{2}$ $C_{1} = \sum C_{2}^{1} C_{2}$
••••	$L_{2}^{2} = \Sigma C_{12}^{2} \mathcal{Y}^{i} \qquad L_{2}^{3} = \Sigma C_{13}^{3} \mathcal{Y}^{i} \qquad \frac{C_{1}}{C_{2}} \qquad C_{2} \qquad C_{2} \qquad C_{3}$ $L_{2}^{2} = \Sigma C_{12}^{2} \mathcal{Y}^{i} \qquad L_{2}^{3} = \Sigma C_{13}^{3} \mathcal{Y}^{i} \qquad C_{2} \qquad C_{2} \qquad C_{2} \qquad C_{2} \qquad C_{3} \qquad C_{2} \qquad C_{2} \qquad C_{3} \qquad C_{2} \qquad C_{3} \qquad C_{2} \qquad C_{3} \qquad C_{3} \qquad C_{3} \qquad C_{2} \qquad C_{3} \qquad C_$
• •	$L_{3}^{\prime} = \Sigma C_{3}^{\prime} Y^{\prime} \qquad L_{3}^{2} = \Sigma C_{3} Y^{\prime}$ $L_{3}^{2} = \Sigma C_{3}^{2} Y^{\prime}$
• •	$ \int_{a}^{b} = \begin{pmatrix} y' & y^{2} & y^{3} \\ y' & y^{2} & y^{3} \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} y' & y' \\ y' & y' \end{pmatrix} $
• •	$ \begin{pmatrix} 3 y^{2} & y^{1} + 2 y^{3} & 3 y^{2} \\ 2 y^{3} & 2 y^{2} & y^{1} + y^{3} \end{pmatrix} $
• •	
• •	$\int_{a}^{b} x^{2} + 3y^{2} + 2y^{3}$ $\int_{a}^{b} y^{2} + 3y^{2} + 2y^{3}$ $\int_{a}^{b} y^{2} + 2y^{3}$ $\int_{a}^{b} y^{2} + 2y^{3}$ $\int_{a}^{b} y^{2} + 2y^{3}$
• •	$\int_{1}^{2} \sqrt{P} = A_{1} + oA_{2} - A_{3}$ $u^{2} = \frac{ B }{ B } = \frac{1}{2} \int_{1}^{2} \frac{1}{2}$
• •	write in cole. $\begin{bmatrix} \sum_{i=1}^{n} m_i \left[\frac{\chi_{\mu}([G])}{N_u} \right]^2 \end{bmatrix}$
• •	(a) $\chi_a = n_a(1, 1, 1)$ $n_{a} = 1$
• •	$\gamma_{k} = n_{b} (1, -1, 1) \qquad n_{b} = 1$
• •	$\lambda_c = N_c (1, 0, -\frac{1}{2})$ $N_c = \begin{bmatrix} \frac{1}{1+3} + 3 + 2 \cdot \frac{1}{4} \end{bmatrix}_{=2}^{2}$
• •	

•	•	3 Character	table	• • • •	• • •	• • •	• •	• •	•	• •	•
•	•	•••••	[1] 3](12)]	2[(123)]	• • •	• • •	• •	• •	0	• •	•
•	•	· · · · · · · · · · · · · ·			• • •	• • •	• •	• •	0	• •	•
•	•	· · · · · · · · 1 ⁺ ·	1.1.	· 1. ·	• • •	• • •	0 0	• •	۰	• •	۰
•	0	· · · · · · · · · · · · · · · · · · ·	1 -1	1	• • •	• • •	• •	• •	•	• •	•
•	•		4		• • •	• • •	• •	• •	•	• •	•
•	•	· · · · · · · · · · ·			• • •	• • •	0 0	• •	0	• •	٠
•	•	Note that in.	the solution	on:	• • •	• • •	• •	• •	0	• •	•
•	•	λ - μ' τ	$4^{2} + 2^{3}$	• • • •	0 0 0	• • •	0 0	• •	0	• •	۰
•	•			• • • •	• • •	• • •	• •	• •	•	• •	•
٠	•		34 424	• • • •	• • •	• • •	• •	• •	۰	• •	٠
•	•	$(\gamma^{c} = \Re_{1} +$	04-4	• • • •	• • •	• • •	• •	• •	•	• •	•
٠	•	· · · · · · · · · ·		• • • •	• • •	• • •	• •	• •	٠	• •	۰
۰	•	The eigenvalu	es of Cr	is non-o	lepenero	te	• •	• •	۰	• •	۰
•	•	· · · · · · · · · · · ·	• • • • •	• • • •		• • •	• •	• •	۰	• •	٠
•	•	This defines	a set of uni	que eig	envecto	rs	• •	• •	•	• •	•
•	•	This defines that diagonalig	a set of Univ ses all Ĉi.	que <i>ei f</i> . Which	envecto Means	rs Ĉi	21	· ·	•	· · ·	•
•	•	This defines that diagonalia a CSCD by:	a set of universal ci.	que <i>eig</i> Which	envecto Means	rs Ĉı	21	· · ·	•	· · ·	•
•		This defines that diagonalia a CSCD by a	a set of univerself.	que <i>eif</i> Which	envecto Means	rs Ĉı	۲ ۲ ۲	· · ·	•	· · ·	•
•		This defines that diagonalia a CSCD by: Again, see	a set of unit res all Éc. tself. Ff 2 f	que <i>eif</i> Which	envecto means	rs Ĉi F f	is Sindig		•	· · · · · · · · · · · · · · · · · · ·	• • • • •
•		This defines that diagonalia a CSCD by: Again. see	a set of unit res all \hat{C}_i . reself. FARE F	que <i>eig</i> Which	envecto means	rs Ĉı F F	is inalic		•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
•		This defines that diagonalis a CSCD ty: Again, see a minimal	a set of unit es all Ĉ: tself. FFR Z F CSCD.	que <i>ei g</i> . Which	envecto means	rs Ĉi	is Hudid			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
		This defines that diagonalia a CSCD by: Again. see a minimal	a set of unit es all Ĉi. tself. FAR Z F CSCO.	que eig. Which	envecto means	rs Ĉı	is Hualiy			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
		This defines that diagonalia a CSCD by: Again. see a minimal	a set of unit res all \hat{c}_i . Herelf. CSCO.	que <i>ei f</i> . Which	envecto Means	rs Ĉi	is			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·
		This defines that diagonalia a CSCD ty: Again. see a minimal	a set of unit es all \hat{c}_i . Herelf. CSCD.	pue eig Which	envecto means	rs Ĉı	is Hudid				• • • • • • • • • • •
		This defines that diagonalia a CSCD by a Again. see a minimal	a set of unit es all Ĉi. Heelf. EFRE F	pre eig	envecto means	rs Ĉr	is Fualicy				· · · · · · · · · · · · · · · · · · ·
		This defines that diagonalia a CSCO by: Again. see a minimal	a set of unit res all \hat{c}_i . #self. $FF/\hat{x}/\hat{x}$ f CSCO.	pue eigi	envecto Means	rs Ĉı	is	· · · · · · · · · · · · · · · · · · ·			
		This defines that diagonalia a CSCD ty: Again, see a minimal	a set of unit es all Éc. tself. CSCD.	pre eigi	envecto means	rs ĉı	is Fudicy				