• • •	8.7 Reducible & irreducible representations
· · · ·	Recall the direct sum of reps.
• • •	$T_{v \oplus w} = T_v \oplus T_w$
· · · ·	$\mathcal{M}_{\mathcal{V} \otimes \mathcal{W}} = \left(\begin{array}{c c} \mathcal{M}_{\mathcal{V}} & \mathcal{O} \\ \hline \mathcal{O} & \mathcal{M}_{\mathcal{W}} \end{array} \right)$
• • • •	Quite often, instead. We would like to
• • • •	"reduce" a representation of Carge climension
· · · ·	"reduce" a representation of Carge climension into representations of smaller dimensions.
• • • •	Definition Let WCV be a linear subspace of carrier space V of a group rep.
• • • • • •	T: G -> GL(V). Then W is invariant under T. a.k.a an invariant subspace
· · · ·	$if \forall g \in G_{\bullet}, \omega \in W$ $T(g, \omega \in W)$
· · · ·	
· · · ·	
• • •	

•	• •	• •	Ē×	anple	· · · · · · · · · · · · · · · · · · ·
•	• •	• •	•	· 1.	ξõζ & V
•	• •	•	•	. ગુ.	R ³ under 50(2). Xy plane is a subspace
•	• •	, , , ,	•	• • •	Juiz here. (othe planes at finite 20 are not)
•	• •	, , , ,	•	. 3.	canonical rep. of Sn:
•	• •	• •	•	• • •	$T(\psi) : \stackrel{\sim}{e_{\tau}} \rightarrow \stackrel{\sim}{e_{\phi(\tau)}}$
•	• •	• •	•	• • •	Then $\vec{U} = \vec{e}_1 + \vec{e}_2 + \cdots + \vec{e}_n$ is invariant
•	• •) 0) 0	•	• • •	て(ゆ) ひ = てゆ) こ 宅 = こ 宅 しょう = ひ
•	• •	• •	0	• • •	in R ³ : diagonal vector
•	• •) 0) 0	•	 ८ ₄	Mæt rep.
•	• •	• •	•	• • •	$\mathcal{H}^{\perp} \mathcal{H}^{\perp} (\mathcal{N}, \mathcal{K})$
•	• •	• •	•	• • •	M; as arfunction. G → K g → M; (g)
•	• •) 0) 0	•	• • •	The linear span of Mij with fixed i
•	• •	• •	•	• • •	$R_{i} := span^{2}(L_{ij}, j=1, -n)$
•	• •) o) o	•	• • •	(Rig, Mij) (h) = Mij (hg)
•	• •	• •	•	• • •	$\mathcal{M}' = \sum \mathcal{M}_{sj}(g) \mathcal{M}_{is}(h)$
•	• •	• •	0	• • •	a function coefficients

• • • • •	=> Ri is an invariant subspace
· · · · ·	left action :
• • • • •	Lj := span { Mj, i=1,n }
· · · · · ·	is also invariant
	$\Rightarrow LR = span f M; j, i, j = 1, -n j subspace of L(G)$
• • • • •	is invariant under GXG - action
• • • • •	$((g_1, g_2) \cdot f)(h) = f(g_1^{+}h g_2)$
• • • • • •	note under left G action.
	Remarks $LR \cong O; L;$ $L (T,V) a rep. \exists W \subset V an invariant$
• • • • •	1 (T,V) a rep. ZWCV an invariant
• • • • •	subspace. Then use can restrict T-toW.
• • • • •	(T/w,W) is a subrepresentation of (T.V)
· · · · · ·	$T _{\omega}(\mathcal{F}) = T(\mathcal{F}) _{\omega}$
• • • • •	We will write T instead of Thu.
• • • • •	
• • • • •	2. if T is unitary on V then it is unitary
	on W
• • • • •	
• • • • •	$\langle T u_1, T u_2 \rangle = \langle v_1, u_2 \rangle \forall u_2 \in V$.
• • • • •	
• • • • •	
• • • • •	

Definition à representation (T.V.) is reducible	<u>رم.</u>
if there is a proper, non-trivial invariant subsp $W \subset U (W \neq 2, V)$	sace.
If V is not reducible, it is an irreduceble	· · · · · · ·
representation ("irrep")	· · · · · · ·
Remarks	· · · · · · ·
1. UUEV. span fTigsv, tgeG? is an invariant subspace.	· · · · · · ·
If T is an irrep. it is U. such a vector is called a cyclic v	ector;
Note; the existence does not imply	· · · · · · ·
that the representation is irreducible	· · · · · · ·
Consider et in the permutation	· · · · · · ·
I e: is a proper. nontrivial	· · · · · · ·
invariant subspace	· · · · · · ·
· ·	
· · · · · · · · · · · · · · · · · · ·	

•	•	•	•	•	• •	2. (T.W) a subrep of (T.V)
•	•	•	•	•	• •	Choose an ordered tas:s
•	•	•	•	•	• •	$\{\omega_{k}, -\cdots, \omega_{k}\}$
•	•	•	•	•	• •	Then it can be completed to an
•	•	•	•	•	• •	ordered pasis of V
•	•	•	•	•	• •	$\mathcal{F} = \mathcal{W}_{1}, \mathcal{W}_{k}, \mathcal{U}_{k+1}, \mathcal{U}_{n}$
٠	٠	٠	•	٠	•	
•	•	•	•	•	•	$T(\boldsymbol{z})(\boldsymbol{\omega}_{i}) = (\mathcal{M}_{\boldsymbol{u}}(\boldsymbol{z}))_{\boldsymbol{j}i}(\boldsymbol{\omega}_{j} + (\mathcal{M}_{\boldsymbol{u}}(\boldsymbol{z}))_{\boldsymbol{\alpha}i})_{\boldsymbol{\alpha}i}(\boldsymbol{u}_{\boldsymbol{\alpha}})$
•	•	•	•	•	•	$T(B_{12}(u_{a}) = (M_{12}(B_{2}))_{ja} w_{j} + (M_{22}(B_{2}))_{ba} U_{b}$
•	•	•	•	•	• •	
•	•	•	•	•	• •	$i.e. (W, U) / M_{i} M_{i2}$
•	•	•	•	•	• •	(Mri Mri)
•	•	•	•	•	• •	
•	•	•	•	•	•	W invariant $\Rightarrow M_{21} = 0$
•	•	•	•	•	• •	· · · · · · · · · · · · · · · · · · ·
•	•	•	•	•	• •	$\Rightarrow T(\emptyset)(w_i) = \sum_{j} M_{ii}(\emptyset)_{ji} w_j$
•	•	•	•	•	. 4	3, 3 , 3 , 1 , 3 , 1 , 3 , 1 , 3 , 1 , 3 , 1 , 3 , 1 , 3 , 1 , 3 , 1 , 3 , 1 , 3 , 1 , 3 , 1 , 3 , 1 , 3 , 1 , 3 , 1 , 1 , 3 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1
•	•	•	•	ſ	μ:	$ \begin{pmatrix} \mathcal{M}_{12} \\ \mathcal{M}_{12} \\ \mathcal{M}_{12} \end{pmatrix} \begin{pmatrix} \mathcal{M}_{11} & \mathcal{M}_{12} \\ 0 & \mathcal{M}_{22} \end{pmatrix} = \begin{pmatrix} \mathcal{M}_{11} & \mathcal{M}_{12} \\ \mathcal{M}_{11} & \mathcal{M}_{12} \end{pmatrix} = \begin{pmatrix} \mathcal{M}_{11} & \mathcal{M}_{12} \\ \mathcal{M}_{12} & \mathcal{M}_{12} \end{pmatrix} $
•	•	•	•	Ż	0	M_{12} $(0 M_{11} / (0 M_{12} M_{12} /))$
•	•	•	•	•	•	Mu is c rep on W
•	•	•	•	•	• •	Mrz is not a rep on VIW-
•	•	•	•		- 1	
•	•	•	•	•	Nh	rif we want to further simplify it?
•	•	•	•	•		we define a change of basis $\begin{pmatrix} 1 & S \\ 0 & 1 \end{pmatrix}$
•	•	•	•	•	· ·	$\omega, \omega, \begin{pmatrix} 1 & S \\ 0 & 1 \end{pmatrix} = (\omega, \omega, \omega$
٠	•	٠	•	٠	• •	$= \begin{pmatrix} & 0 \\ 0 & 1 \end{pmatrix}$

$\begin{pmatrix} 4 & -S \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathcal{M}_{12}(\theta) & \mathcal{M}_{12}(\theta) \\ 0 & \mathcal{M}_{22}(\theta) \end{pmatrix} = \begin{pmatrix} \mathcal{M}_{11}(\theta) & \mathcal{M}_{12}(\theta) - S\mathcal{M}_{22}(\theta) \\ 0 & \mathcal{M}_{22}(\theta) \end{pmatrix}$	•
we require Miz(g)-SM22(g)=0 UgEG.	· •
This puts a stronger restriction on	· •
the structure of the representation.	
3. fustient space. V/W	•
$V_1 \sim V_2 \text{iff} V_1 - V_2 \in W.$	• • • • •
$T(F_{1}(v+W) = T(F_{2}(v)+W)$ $\Rightarrow T(F_{1})(v+W) = T(F_{1})(T(F_{2})\sigma+W)$	· •
= T(B1)TG2 + W	. •
$= \left(T(\mathcal{G}_{\mathcal{O}}, T(\mathcal{G}_{\mathcal{O}}) \right) \left(\mathcal{O} + \mathcal{O} \right)$	•
Uc define a basis for V/W as cla+W. The rep Looks	•
like Mrr Wr+ this basis) ©
Definition A representation T is called completely	•
reducible if it is isomorphic to a direct	•
sum of representations. $W_1 \oplus W_2 \oplus \cdots \oplus W_n$	· •
where Wi are irreps. Thus there is a basis in which the matrices look like	• • •

$\mathcal{M}(\mathcal{F}) = \begin{pmatrix} \mathcal{M}_{u}(\mathcal{F}) & 0 & 0 & - & - \\ 0 & \mathcal{M}_{22}(\mathcal{F}) \\ 0 & - & \mathcal{M}_{33}(\mathcal{F}) \\ 1 & & & & \end{pmatrix}$ reducible.
$\mathcal{M}(\mathcal{F}) = \left(O \mathcal{M}_{22}(\mathcal{F}) \right)$
irreps are completely
reducible.
reducible but not completely => "indecomposable"
<u>Examples</u>
$1 G = \mathbb{Z}_2 1 - \mathbb{D} \text{ resp } V = \mathbb{R}$
$trivial : P_{+}(1) = P_{+}(-1) = 1$
$\rho_{-(1)} = 1, \rho_{-(1)} = -1$
$\mathcal{L} = \mathcal{L}_2 \stackrel{\text{\tiny }}{=} S_2 \stackrel{\text{\tiny }}{=} \delta_2, \mathcal{L} = $
$\Lambda_{\mathcal{L}}(e) = \left(\begin{array}{cc} \underline{\Lambda} & \circ \\ & \underline{\Lambda} \end{array}\right)$
$\mathcal{M}(\tau) = / \circ \mathcal{L} \setminus \cdots $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\Delta = \frac{J}{2} \left(1 - 1 \right) = \lambda \tilde{\mu}(\tau) = A^{-1} \mu A = \left(1 \right)$
$A = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix} \implies \tilde{\mathcal{M}}(\tau) = A^{-1} \mathcal{M} A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
$l_{+}(e) = l_{+}(\tau) = 1$
$P_{-}(e) = 1, P_{-}(\tau) = -1$
$(T, V) \stackrel{\vee}{=} l_+ \oplus l$ completely reducible
3. $G = U(1) = \{ z \in C \mid z = 1 \}$ $V = C$.
$\int \mathcal{G} = \left[\mathcal{F} = \mathcal{O} \right] = \left[\mathcal{F} = \mathcal{O} \right]$
$f_n(\bar{z}) = 2^n f_{\bar{v}r} \forall n \in \mathbb{Z}.$
lu (Z,Zz) = (Z,Zz)" = Pu(Z) Pu (Dz) are there other irreps?
are there other irreps ?

4. Finite-dimensional representations
of Abelian groups are completely reducible.
Choosing an ordered orthonormal (ON) bas: 5.5.+.
all M(f) (48EG) are commutized unitary matrices.
over the complex field
$\mathcal{M}(f_i) \mathcal{M}(f_j) = \mathcal{M}(f_j) \mathcal{M}(f_j) \qquad \forall f_i, f_j \in G$
as required by the abelianity.
=> M's can be simultaneously diagonized
(spectral theorem)
M(2) = diag (2), 12(2), 2d(2)]
For G=Uus. any f.d. rep on V×Gd
M(7) = diaf { Pn, (2), Pn2(2), Pnd (2)]
$V \cong \ell_{n_1} \oplus \ell_{n_2} \oplus - \cdots \oplus \ell_{n_d}$
Finite compact Abelian groups
Finite. compact Abelian groups all irreps are 1D.
all irreps are ID.
$e, g, SD(2) \qquad R(0) = \begin{pmatrix} \omega S 0 & -S n 0 \\ C 0 & C S 0 \end{pmatrix}$
$(\cdot \cdot$
$ \xrightarrow{- \circ} \begin{pmatrix} e^{i\vartheta +} & 0 \\ - & - & - \\ o & + & e^{-i\vartheta} \end{pmatrix} $
$\left(-\frac{\varepsilon}{2}-\frac{1}{2}-\frac{1}{2}\right)$
So mal chla an Ri but innadurable an P
So reducible on B. but irreducible on R.

5. Non abelian $S_3 \stackrel{u}{=} D_3$ on $\mathbb{R}^3 = \operatorname{span} \beta e_1, e_2, e_3$? $T(\sigma)e_1 = e_{\sigma(1)}$ u_1 e_2 u_2
Q U. = e, tez + ez invariant subspace w
$T(\sigma) u_{\sigma} = u_{\sigma} = T _{w} = \mathcal{I}_{w}$ trivial rep.
e) its complement $W^{\perp} = span \beta u_1, u_2 j$
a. $u_1 = e_1 - e_2$
a. $u_1 = e_1 - e_2$ $u_2 = e_2 - e_3$ $u_3 = u_2$
$T((12)) \cdot U_1 = -U_1$ $T((23)) U_1 = -U_2$ $T((13)) U_1 = -U_2$
$T(12)) U_2 = U_1 + U_2$ $T(123)) U_2 = -U_2$ $T(123) U_2 = -U_1$
$\mathcal{M}((12)) = \begin{pmatrix} - & \\ 0 & \end{pmatrix} \qquad \mathcal{M}((23)) = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \qquad \mathcal{M}((13)) = \begin{pmatrix} 0 & - \\ - & 0 \end{pmatrix}$
unitary rep. not unitary mat:
b. Using <u>on</u> basis.
$\mathcal{M}((12)) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \begin{array}{c} T((23)) & \sigma_1 = -\frac{1}{2} & \sigma_1 + \frac{\sqrt{5}}{2} & \sigma_2 \\ \hline T((23)) & \sigma_2 = -\frac{\sqrt{5}}{2} & \sigma_1 + \frac{1}{2} & \sigma_2 \end{array}$
$\bigwedge \left[\left[\left(23\right) \right] \right] = \left(\begin{array}{c} -\frac{1}{5} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{array} \right)$
Similarly, $\mathcal{M}[[3] = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \qquad \mathcal{M}[(23)] = \mathcal{R}(\frac{2}{3}\pi) = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$
R ³ ⊻ w⊕w [⊥]

•	•	•	•	•	•	•	•	•	٠	•	٠	•	•	٠	•	•	•	•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	•
•	•	•	•	٠	•	•	•	•	•	٠	•	•	•	•	٠	•	•	•		.	٠	٠	•	•		•	•	•	٠	•	ò	.0	•	٠	٠	•	•
•	٠	•	٠	٠	٠	•	•	٠	•	٠	6.	•	Ņ	pr	٩	g	X	e	al	IJ	• •	.С	อก	5.50	le	ſ.	۰.	Ŷ	•	0- 1	<u>f</u>	Ķ	∧.	۰	٠	•	•
•	٠	٠	•	۰	•	•	•	٠	•	0	•			•	•	•		•	•	•	•	•	•	٠	•	٠	٠	•	٠	•	•	٠	•	۰	٠	•	•
•	٠	•	٠	٠	•	•	•	٠	•	٠	•	•	a	1.	R	n	•	•	•	•	۰	٠	٠	•	•	•	•	•	٠	•	•	•	•	•	٠	•	•
•	•	•	•	٠	•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	i	•	•	•	•	`	•	٠	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	U.	: چ	=.	2, (ei	•		in I	J ØL	ri a	nt	•	Şι	cDs	pc	e	•.	.u		•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•																•	•	•	•	•	•	•	•	•
•	•	٠	•	٠	•	•	•	•	•	٠	٠	•	•	. L			7.	X :	2.0	.i.	•	Ϋ́,		2 ነ	•	٠	٠	٠	•	٠	•	•	٠	٠	•	•	•
•	٠	٠	•	۰	•	•	•	٠	•	0	•	•	•	• •	1	•	Ċ	• -	- 'x		•	i	•	•	•	•	•	· .		ċ	•	٠	•	۰	٠	•	•
•	•	٠	•	٠	•	•	•	•	•	٠	•	•	•	. เ	•	÷	۲.	•	- ^	i e	•	ł	. 2	ZX;		ų	. (r'i	¢ k	<u> </u>	•	•	٠	٠	٠	•	•
•	•	•	•	٠	•	•	•	•	•	٠	•	•	•	•	٠	٠	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	م	•	<i>.</i> `	•	, •	•	•	ı.	•	Ļ	•	•	•	•	•		•	i,	•	•	•	•	•	•	•
•	•	•	•	٠	•	•	•	•	•	•	•	•	E) ~{	h	•	L.	a	no	Ι.	L	•	. (ue	•	ļr	ſæ	di	رب	:66	Q.,	•	•	٠	•	•	•
•	•	•	•	٠	•	•	•	٠	•	٠	•	•	•	•	٠	•	•	•	•	•	٠	٠	•	•	•	٠	٠	•	٠	•	•	•	•	٠	٠	•	•
٠	•	٠	٠	٠	•	•	•	•	٠	٠	٠	•	•	٠	٠	٠	•	•	•	•	٠	٠	٠	•	•	٠	•	•	٠	•	•	•	٠	٠	•	•	٠
٠	•	٠	٠	٠	٠	•	•	•	٠	٠	٠	•	•	٠	۰	۰	٠	•	•	٠	٠	٠	٠	•	•	٠	۰	٠	٠	٠	•	•	٠	٠	•	•	•
٠	•	٠	٠	•	•	•	•	•	٠	•	٠	•	•	٠	•	٠	•	•	•	٠	•	٠	٠	•	•	٠	•	٠	•	•	•	•	٠	•	•	•	•
٠	•	•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	•
٠	•	•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	٠
•	•	•	٠	٠	•	•	•	•	٠	•	•	•	•	•	٠	•	•	•	•	•	٠	٠	٠	•	•	•	•	٠	٠	•	•	•	•	٠	•	•	٠
•	•	٠	٠	٠	•	•	•	•	٠	٠	•	•	•	•	٠	•	•	•	•	•	٠	٠	٠	•	•	•	٠	•	٠	•	•	•	٠	٠	•	•	٠
•	•	٠	٠	٠	•	•	•	•	٠	٠	•	•	•	•	٠	•	•	•	•	•	٠	٠	٠	•	•	•	•	•	٠	•	•	•	٠	٠	•	•	٠
•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	٠	•	•	•	•	٠	٠	•	•	•	•	٠	•	•	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	٠	•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	٠	٠	•	•	•	•	•	•	٠	•	•	•	•	٠	٠	•	•
•	٠	•	•	٠	•	•	•	٠	•	۰	•	•	•	•	۰	٠	٠	•	•	•	۰	٠	•	٠	•	٠	٠	•	٠	•	•	•	•	٠	٠	•	•
٠	•	٠	٠	٠	•	•	•	•	٠	٠	٠	•	•	٠	٠	٠	•	•	•	٠	٠	٠	٠	•	•	٠	٠	•	٠	٠	•	•	٠	٠	•	•	•
•	٠	•	•	٠	•	•	•	٠	•	۰	•	•	•	•	۰	•	•	•	•	•	۰	٠	•	•	•	•	٠	•	٠	•	•	•	•	۰	•	•	•
٠	•	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•	٠	٠	•	•	•	•	٠	٠	•	•	•	•	٠	٠	•	•	٠
•	•	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	•
•	•	•	٠	٠	•	•	•	•	٠	٠	٠	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	٠	٠	•	•	•	•	٠	•	•	•
•	•	٠	٠	٠	•	•	•	•	٠	٠	٠	•	•	٠	٠	٠	•	•	•	•	٠	٠	٠	•	•	•	٠	٠	٠	•	•	•	٠	٠	•	•	•
٠	٠	٠	٠	۰	•	•	٠	٠	•	٠	•	•	•	٠	۰	٠	٠	•	•	•	•	٠	•	٠	•	٠	٠	٠	٠	•	٠	٠	٠	•	٠	•	٠
٠	٠	٠	٠	۰	•	•	•	٠	•	٠	•	•	•	٠	۰	٠	٠	٠	•	•	0	٠	•	٠	•	٠	٠	٠	٠	•	٠	٠	٠	0	•	•	٠
٠	•	•	٠	٠	•	•	•	•	٠	•	٠	•	•	٠	٠	٠	•	•	•	٠	٠	•	٠	•	•	٠	٠	٠	٠	٠	•	•	•	•	•	•	•
•	•	•	٠	•	•	•	•	•	٠	•	٠	•	•	٠	٠	٠	•	•	•	•	•	•	٠	•	•	٠	٠	٠	٠	•	•	•	•	•	•	•	•
•	•	•	•	٠	•	•	•	•	٠	٠	•	•	•	•	٠	•	•	•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠
•	•	٠	•	٠	٠	•	٠	٠	٠	٠	•	•	•	•	٠	٠	•	•	•	•	٠	٠	•	٠	•	•	٠	•	٠	٠	•	•	•	٠	•	•	٠
•	•	٠	•	۰	٠	•	٠	•	٠	۰	•	٠	٠	٠	۰	٠	•	٠	٠	•	٠	۰	•	٠	•	•	٠	•	٠	٠	٠	٠	٠	٠	•	•	•
•	•	٠	•	۰	٠	•	٠	•	٠	0	•	•	٠	٠	۰	٠	•	٠	٠	•	٠	•	•	•	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	•	•	٠
	•																																				
٠	•	٠	٠	٠	•	•	•	٠	٠	•	٠	•	•	٠	٠	٠	٠	•	•	٠	٠	•	٠	•	•	٠	٠	٠	•	•	•	•	٠	٠	•	•	•
	•																																				
	•																																				
	٠																																				
	•																																				
•	•	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	•	٠	٠	٠	•	•	•	٠	٠	٠	٠	•	٠	٠	٠	٠	•	•	•	٠	٠	٠	•	•	•