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Definition central extension
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1 A is abelian
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In QM we talk about 21501but distinct
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uniquely defined by the density matrix
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Consider symmetry operations on PH
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Not quite a group representation projectify

if f b us
b f blful f 8,82 b11.82 fi.fr

reduceback to rep

rotation of spins sun is a

58 striatum spin projective

rep of50131
Euler angles 7 7

Rep 0.4 e a'eiér'eies
R 22.0.0 1 s for fermion tore

a 22 phare
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7 More on group actions

Tends 0 theorem

IÉ hfthe group action of G on a set

Exx

A left action 8,141821 7 018,8 x

g 82x 18,82 x

right action x 84.8 1828,1

1a X

mention different forms of L R actions

and induced actions on F X Y

A G action is see Moone's note
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tropy group stabilizer group
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If the groupaction of G is free
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Theorem Stabilizer orbit

Let X be a G set Each left coset of
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1 1 correspondence with points in Oak

There exists a natural isomorphism
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For a finite group I 0am G G Gyex

Example
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1 Calhl is a subgroup
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