P16. $D=\left\{\left(\begin{array}{cc}z & 0 \\ 0 & z^{-1}\end{array}\right), z=e^{i \theta}\right\} \cong u(1)$
(a)

$$
\begin{aligned}
& d \in D \quad u=\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right) \in S u(2) \quad\left|\alpha^{2}+|\beta|^{2}=1\right. \\
& u d u^{-1}=\left(\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right)\left(\begin{array}{cc}
z & 0 \\
0 & \bar{z}
\end{array}\right)\left(\begin{array}{cc}
\bar{\alpha} & -\beta \\
\bar{\beta} & \alpha
\end{array}\right) \\
&=\left(\begin{array}{cc}
\left.\alpha\right|^{2} z+|\beta|^{2} \bar{z} & \alpha \beta(-z+\bar{z}) \\
\bar{\alpha} \bar{\beta}(-z+\bar{z}) & |\alpha|^{2} \bar{z}+|\beta|^{2} z
\end{array}\right) \in D
\end{aligned}
$$

$$
\Rightarrow \alpha=0 \text { or } \beta=0
$$

$$
\begin{aligned}
N_{\text {su(}},(D) & =\left\{\left(\begin{array}{cc}
z & 0 \\
0 & \bar{z}
\end{array}\right), z \in u(1)\right\} \cup\left\{\left(\begin{array}{cc}
0 & -\bar{z} \\
z & 0
\end{array}\right), z \in u(1)\right\} \\
& \equiv D \cup\left(\begin{array}{ll}
0 & -1 \\
1 & 0
\end{array}\right) D
\end{aligned}
$$

(b)

$$
\begin{aligned}
& N_{\operatorname{sun}_{2}(P) / D=}\left(\left(\begin{array}{ll}
z & 0 \\
0 & z
\end{array}\right) D=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) D,\right. \\
&\left.\left(\begin{array}{cc}
0 & -\bar{z} \\
z & 0
\end{array}\right) D=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) D\right\} \underline{u} \mathbb{R}_{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \left(\begin{array}{ll}
\alpha & 0 \\
0 & \bar{\alpha}
\end{array}\right)\left(\begin{array}{ll}
z & 0 \\
0 & \bar{z}
\end{array}\right)\left(\begin{array}{ll}
\bar{\alpha} & 0 \\
0 & \alpha
\end{array}\right)=\left(\begin{array}{ll}
z & 0 \\
0 & \bar{z}
\end{array}\right) \\
& \left(\begin{array}{cc}
0 & -\bar{\alpha} \\
\alpha & 0
\end{array}\right)\left(\begin{array}{ll}
z & 0 \\
0 & \bar{z}
\end{array}\right)\left(\begin{array}{cc}
0 & \bar{\alpha} \\
-\alpha & 0
\end{array}\right)=\left(\begin{array}{ll}
\bar{z} & 0 \\
0 & z
\end{array}\right)
\end{aligned}
$$

(d) should of least conrain $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. and some $a^{-}\left(\begin{array}{cc}0 & , \bar{z} \\ -\bar{z} & 0\end{array}\right)$. then it contains $a^{2}=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$
\& $a^{3}=\left(\begin{array}{cc}0 & -z \\ \bar{z} & 0\end{array}\right)$. it's not isomorphic to \mathbb{Q}_{2}.

NB $\left(N_{\text {su(2) }}(0) / D\right.$ is not a subgrovep of $S u(2)$ or $\left.N_{\text {Sul(2) }}(D)\right)$

P17.

$$
G_{t}-\operatorname{set} x . \quad \phi: G \rightarrow S_{x}
$$

(a) eff ective $\Leftrightarrow \phi$ injective, i.e. $\phi(g)=1$ iff $g=1$
$\forall z \neq 1$. $\exists x$ s.t. $g x_{1}=x_{2} \neq x_{1} \Leftrightarrow \quad \forall g \neq l$. $\phi(8)$ is a nontrivial permutation $\phi(\%) \neq 1$
(b) $\left\{z_{i}\right\}$ are ineffective $\forall z \in G$

$$
\begin{aligned}
& g_{i} g x=g_{i} \cdot x^{\prime}=x^{\prime} \quad(\forall x \in X) \\
& g_{i} x=8 x=x^{\prime} \\
& \Rightarrow g_{i} g=8 g_{i} \quad \forall z \in G
\end{aligned}
$$

trivial to show $\left\{g_{i}\right\}$ is a groug

$$
\Rightarrow \quad H=\left\{g_{i}: g_{i} x=x \quad \forall x \in x\right\} \& G
$$

(C) define the action $G / H \times X \rightarrow X$

$$
\begin{gathered}
(g H) \cdot x==8 x \\
\forall x \in X \text {, s.t }(g H) x=x \Leftrightarrow q x=x \Leftrightarrow q \in H \Leftrightarrow q H=H=1_{G / H}
\end{gathered}
$$

P18. X a finite G set.
G - action transitive \Rightarrow one orbit $=X$
Burnside's lemma $\Rightarrow|G|=\underset{j \in G}{\underset{j}{ }\left|x^{f}\right|}$
If all g's have fixed points. $\sum_{j \in e}\left|x^{\delta}\right| \geqslant \sum_{j \in \epsilon} 1=|G|$ equality holds if $\forall z \cdot\left|x^{z}\right|=1$

But $\left|x^{e}\right|=|x|>1$
$\Rightarrow\left|x^{g}\right|=0$ for some g.

P19.
Lemma: Go abelian
$P||\theta|, P$ prime $\Rightarrow \exists g \in G$. of order P

Proof. $|G|=p m$.
the Lemma holds for $m=1$. Since if $\mid G 1=p$.
G is cyclic. as a result of lagrange theorem then any element $f \in G$ has order $p \quad\left(f^{p}=1\right)$

Now suppose for a general $m>1, \exists h \in G$. s.t. h has order t, i.e. $h^{t}=1$
(1) if $p \mid t$. then $h^{t / p}$ is of order p.
(2) else $\langle h>$ is a normal subgroup. $(\because G$ is abelian)
$G / C h>$ is an abelian group of order

$$
l a t / t=p m / t \quad(\because k h>1=t)
$$

then m / t is an integer smaller than m.
by induction. Glchs has an element
of order p
homomorphism $\varphi_{i} G \longrightarrow G /<h>$ a surjection.

$$
g \longmapsto g<h>
$$

if $\&$ sh $>$ has order P. Then

$$
\begin{aligned}
& \varphi\left(g^{p}\right)=(z\langle h\rangle)^{p}=1_{[x /\langle h\rangle}=\langle h\rangle \\
& g^{p}=h^{x} \in\langle h\rangle \\
& \text { if } h^{x}=1 \Rightarrow g^{p}=1 \\
& \text { else } \exists y \cdot \operatorname{sit}\left(h^{x}\right)^{y}=1 \Rightarrow g^{p y}=1 \Rightarrow\left(g^{y}\right)^{p}=1
\end{aligned}
$$

