Application
oh
O(3)

$\mathrm{Cu}^{2+}: d^{9}$

$$
\stackrel{\iota}{l}_{y}^{y}
$$

$$
x^{2}-y^{2}
$$

 singlet

$$
H=-t \sum c_{i \sigma}^{+} c_{j \sigma}+u \sum u_{i+} u_{i \downarrow}
$$

Single-band Hubbaral model

$$
\begin{aligned}
& H=\sum_{k \sigma} \epsilon_{k} C_{k \sigma}^{+} C_{k \sigma}-V \sum_{k k^{\prime}} C_{k \sigma}^{+} C_{-k \downarrow}^{+} C_{-k^{\prime}}{ }_{\alpha} C_{k^{\prime} \uparrow} \\
& S C \quad\left\langle C^{+} C>\right. \\
& \Delta_{k}=\frac{C_{-k \downarrow} C_{k \uparrow}}{H_{k}}=\left(\begin{array}{l}
\epsilon_{k}-\Delta_{k} \\
S(k)= \pm \sqrt{\Lambda_{k}}-\epsilon_{k}^{2}+\Delta_{k}^{2}
\end{array}\right.
\end{aligned}
$$

$\Delta x ?$

$$
\Delta_{k}=\sum_{\sigma} \frac{\Delta_{r}}{=_{K_{\text {scaler }}}^{i \vec{k} \sigma}} \cdot \cdots \cdot(\pm 1,0)
$$

(1) $\quad P^{\mu}=n_{\mu} \int_{G} \overline{x^{\mu}(z)} T(z) d z$
(2) $T(8)$
(3) $\quad P^{\mu} \Delta_{k}=\Delta_{k}$

$$
\begin{cases}A_{1}: \cos k_{x}-\cos k_{y} & " s " \\ B_{1}: \frac{\cos k_{x}-\cos k_{y}}{} & " d " \\ E=\left[\sin k_{x} \cdot \sin k_{y}\right] & " p-\operatorname{cov} e, "\end{cases}
$$

Review of representation their
L. Deft. $(1) G \longrightarrow G L(v) \cong G L(n, K)$
$z \longmapsto T(8) \longmapsto \mu(8)$

$$
T(f) \hat{e}_{i}=\sum_{i} M(f)_{j i} \hat{e}_{j}
$$

(2) equivalent rep.

$$
\begin{array}{rll}
V_{1} & \xrightarrow{A} V_{2} \\
T_{1}(q) \downarrow & & \downarrow T_{2}(q) \\
V & & A \\
V_{2}
\end{array}
$$

invertible intertwine A

$$
T_{2}(f)=A T_{1}(g) A^{-1}
$$

is an iso morphism
(3) Unitary rep: V is an inner product space

$$
\begin{aligned}
\langle u(g) w, u(g) v\rangle= & \langle w, v\rangle \\
& (\forall w, v \in v)
\end{aligned}
$$

2. Haar measure:

$$
f: G \rightarrow \mathbb{C} \in \operatorname{Map}(G, \mathbb{C})
$$

$$
\int_{G} f(h g) d g=\int_{G} f(q) d g \quad(\forall h \in G)
$$

G. finite / compact
left haar measure $=$ right.

Ex- $G=\mathbb{R} \quad \int d x$

$$
\begin{array}{ll}
G=R_{>0}^{*} & \int \frac{d x}{x} \\
G=\epsilon t(n \cdot R) & \int \frac{|\operatorname{det} g|^{-n} \prod_{i j} d g_{i j}}{G=\operatorname{su(2)}} \begin{array}{cc}
& \int \frac{1}{16 \pi^{2}} d \varphi d \phi \sin \theta d \theta \\
& {[0,4 \pi)(0,2 \pi)} \\
& {[0, \pi)}
\end{array}
\end{array}
$$

Unitarization $\langle v, w\rangle_{2}=\int_{G}\langle T(8) v, T(8) w\rangle_{1}$ $d z$
3. Regular representation: $A \times G$ action on G.

$$
\begin{gathered}
\left(g_{1}, g_{2}\right) \longmapsto L\left(g_{1}\right) R\left(g_{2}^{-1}\right) \\
\left(g_{1}, g_{2}\right) \cdot g_{0}=g_{1} g_{0} g_{2}^{-1} \\
f \in \operatorname{Map}(G \cdot \mathbb{C}) . \\
{\left[\left(g_{1}, g_{2}\right) f\right](h)=f\left(g_{1}^{-1} h g_{2}\right)}
\end{gathered}
$$

$\{f\}$ is a rep of $G \times G$.

Regular rep

$$
\begin{array}{r}
L^{2}(G):=\left\{f:\left.G \rightarrow \mathbb{C}\left|\int_{G}\right| f(g)\right|^{2} d g<\infty\right\} \\
<f \cdot f><\infty
\end{array}
$$

(Hilbert space)

$$
G \times\{1\} \quad\{1\} \times G
$$

finite group. " δ-basis".

$$
\begin{aligned}
\delta_{g}(f) & = \begin{cases}1 & f^{\prime}=g \\
0 & \text { otherwise }\end{cases} \\
\left(q_{1} \cdot \delta_{g_{2}}\right)(g) & =\delta_{g_{2}}\left(q_{1}^{-1} g\right)=\delta_{g_{1}} g_{2}(g) \\
g_{1} \cdot \delta_{q_{2}} & =\delta_{g_{1} f_{2}}
\end{aligned}
$$

4. reducible \& irreducible reps.
if $\exists W \subset V$ a proper, nontrivial
invariant subspace $\quad(w \neq 0 . v)$

$$
(\forall \omega \in W . \forall \& \quad T(8, \omega \in W)
$$

completely neducibce. $\quad V \leqslant \oplus W^{\mu}$

Ex. (1) Abelian groups
(2) canonical rep of $S_{n} \$ \vec{e}_{i} \zeta\left(R^{n}\right)$

$$
\begin{aligned}
& \sigma \cdot \hat{e}_{i}=\hat{e}_{\sigma(i)} \\
w= & \Sigma \hat{e}_{i} \\
V= & w \oplus w^{\perp}
\end{aligned}
$$

isotypic decomposition

$$
V \underline{u} \oplus_{\mu} a_{\mu} V^{\mu}
$$

5. Schur's lemma:

$$
\begin{aligned}
& V_{1} \xrightarrow{A} V_{2} \\
& \begin{array}{cl}
T(f) \downarrow \\
V_{1} & \\
& \\
& V_{2}
\end{array} \\
& V_{1}, V_{2} \text { isrep }
\end{aligned}
$$

(1) A is 0 or isomorphism
(2) $V_{1} \triangleq V_{2}=V$ a complex vector space

$$
\begin{aligned}
& A(v)=\lambda v \quad(\lambda \in G) \\
& S O(2) \\
& \longrightarrow {[H, T(G)]=0 }
\end{aligned}
$$

6. Pontryafin dual. Abelian S

$$
\begin{aligned}
& \hat{S}:=\operatorname{Hom}(S, u(1)) \\
& \left(x_{1} \cdot x_{2}\right)(s)=x_{1}(s) \cdot x_{2}(s) \quad s \in S \\
& \text { LCA. } \quad \hat{s} \cong S \\
& \frac{S}{\mathbb{S}} \underset{\mathbb{R}}{\hat{S}} \\
& \left\{\begin{array}{lll}
u(1) & \mathbb{Z} & u(1) \\
\mathbb{Z}_{n} & \mathbb{Z}_{n} & \mathbb{R}_{n} \\
\mathbb{Z} & u(1) & \mathbb{Z}
\end{array}\right. \\
& 2 \quad u(1) \quad 2 \\
& \longrightarrow \text { Bloch's theorem } \\
& L_{\gamma} \varphi(x)=\varphi(x+r)=x_{\bar{k}}(\gamma) \varphi(x) \\
& \left\{\begin{array}{l}
\varphi(x)=e^{2 \pi i k \cdot x} u_{k}(x) \\
u_{k}(x)=u_{k}(x+\gamma)
\end{array}\right.
\end{aligned}
$$

7. Peter-Weyl theorem: orthojonal relations between moarix elements cheracte

$\left.V^{\mu} . \operatorname{dom} V^{\mu}=n_{\mu} \quad \& \mu_{j k}^{\mu_{j}}\right\}$ counglete basis $\left\langle\mu_{i, j, j}^{\mu}, \mu_{i, j, j}^{\mu_{2}}\right\rangle=\frac{1}{n_{\mu}} \delta^{\mu_{1} \mu_{2}} \delta_{i, i 2} \delta_{j i, k}$

$$
|G|=\sum_{\mu} n_{\mu}^{2} \quad \text { finte } G
$$

$\longrightarrow\left\{x_{\mu}\right\}$ ON bas:s of $L^{2}(G)$ class

$$
\begin{aligned}
& \frac{1}{\left.1 G_{\mid} \mid S_{i}\right)} m: \overline{x_{\mu}\left(c_{i}\right)} x_{\mu}\left(c_{i}\right)=\delta_{\mu \nu} \\
& \frac{m_{i}}{\left|G_{1}\right|} \sum_{\mu} \overline{x_{\mu}\left(c_{i}\right)} x_{\mu}\left(c_{j}\right)=\delta_{i j}
\end{aligned}
$$

$$
\begin{aligned}
& P_{i j}^{\mu}=n_{\mu} \int_{G} \overline{M_{i j}^{\mu}(f)} T(f) d z \\
& c^{2}=\lambda c
\end{aligned}
$$

$S_{n}: \quad c=P Q$

$$
\begin{aligned}
& P=\sum_{P \in R T,} \\
& Q=\sum \operatorname{ssn}(q) f \\
& f \in(\pi)
\end{aligned}
$$

Schur - Weyl dualuty

$$
\begin{aligned}
& V^{\otimes n} \underline{\underline{L} \Theta D^{\lambda} \otimes V^{\lambda}} \\
& \text { irep. } G L(n)
\end{aligned}
$$

