Recap on Poutryagin duals

1. Let S be an abelian proup.
(1) $\hat{s}:=\operatorname{Hom}(S . U(1))$ the character graup of s

$$
\begin{aligned}
& x: \quad s \longrightarrow u(1) \\
& s \longmapsto x(s) \\
&\left(x_{1} \cdot x_{2}\right)(s)=x_{1}(s) x_{2}(s)
\end{aligned}
$$

a.

$$
\begin{aligned}
& s=\mathbb{R} \quad x_{k}(a)=e^{i k a} \quad a \in \mathbb{R} \\
& \quad x_{k_{1}} \cdot x_{k_{2}}=x_{k_{1}+k_{2}} \\
& \Rightarrow \hat{R} \cong \mathbb{R}
\end{aligned}
$$

b.

$$
\begin{array}{ll}
S=2_{n} \quad x(T)=\omega \quad \omega^{n}=1 \quad \omega_{k}=e^{i \frac{22}{n} k} \\
k \in[1 \cdot n] \\
x_{k_{1}} x_{k_{1}}=x_{k}-k_{2} & \\
\Rightarrow \hat{z}_{n} \cong 2_{n}
\end{array}
$$

c. $S=2 . \quad x_{k}(1)=e^{i k} \quad x_{k}(u)=e^{i k n}=e^{i(k+2 z) n}$

$$
k \sim k+2 \pi
$$

$$
k \in \mathbb{R} / \sim
$$

$$
\begin{gathered}
x_{k_{1}} \cdot x_{k_{2}}=x_{k_{1}+k_{2}} \\
\Rightarrow \hat{2} \cong u(1) \\
d \cdot S=u(1) \quad \omega=e^{i \phi} \quad \phi \in(0,2 \pi) \\
x_{k}(\phi+2 \pi \cdot n)=e^{i k(\phi+2 n z)} \\
\Rightarrow k \in Z . \\
\Rightarrow \hat{u}(1)=Z .
\end{gathered}
$$

(2)

$$
\begin{aligned}
& \hat{\hat{S}}:=H \text { om }(\hat{S} \cdot u(1))=\operatorname{Hom}(\operatorname{Han}(S, u(1)) . u(1)) \\
& \hat{S} \longrightarrow u(1) \\
& \text { evs }: \hat{x} \longmapsto x(S) \in u(1)
\end{aligned}
$$

(3) Locally complat s

$$
\begin{aligned}
& \hat{\hat{s}} \cong S_{\hat{s}} \\
& S \longrightarrow \hat{S} \\
& s \longmapsto e V_{s}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ll}
\text { non-locally compact } \left.-\hat{Q}=\mathbb{R} \quad \begin{array}{rl}
\hat{Q} & =\mathbb{R} \\
& \neq Q
\end{array}\right) .
\end{array}\right.
\end{aligned}
$$

2 Fourier transform.

$$
\begin{aligned}
& \hat{f}(x)=\int_{\underline{E}} d g f(x) x_{(x)} \\
& f(x)=\int_{\hat{G}} d \hat{z} \hat{f}_{(x)} \overline{x_{(x)}}
\end{aligned}\left(\begin{array}{l}
\overline{x_{(}(x)} \\
x(x)
\end{array} \text { mootler of converaton }\right)
$$

3. $\hat{2} \cong u(s)$
$\Gamma \underline{=} 2^{d} \quad T=\mathbb{R}^{d} / \Gamma \cong u(1)^{d} \quad$ torus/unit cell
$\Gamma^{v}=\left\{\delta \in \mathbb{R}^{d} \cdot \& \gamma \in \mathbb{Z}\right\} \cong \mathbb{Z}^{d}$ reciprocal latrice

$$
\begin{aligned}
& \begin{array}{lr}
T^{v} & =\mathbb{R}^{d} / \Gamma^{v} \underline{\underline{u}} \underline{u(1)^{d}} \quad \text { Brillocin zone } \\
\ddots \cong \widehat{\Gamma} & \text { torus }
\end{array} \\
& \bar{k} \in T^{v} \xlongequal{\underline{\Gamma}} \quad \bar{k} \text { labels dofferent irreps } \\
& \text { of the translation group (P) } \\
& \text { disurete. } \\
& x_{\vec{k}}(\gamma)=e^{2 \pi i \vec{k} \cdot \vec{\gamma}} \quad(\vec{\gamma} \in P \\
& \vec{k}=\bar{k}+\vec{g} \quad \vec{q} \in P^{v} \text {, }
\end{aligned}
$$

8. 9. Ponaryagin dual it
8.9.1. Application: Bloch's theorem
(see alts. es. Ashcroft $\not \subset M e r m i n$
solon state physics. Chap. 8)

The one -electron Hamitomion.

$$
H=-\underline{\frac{\hbar^{2}}{2 m} \nabla^{2}+u(r)} \quad u(\gamma)=u(r+\gamma)
$$

Bloch's Theorem: The eigen states φ of the above Hamiltonian H can be chosen to have the form

$$
\varphi(\vec{r})=e^{i \vec{k} \cdot \vec{r}} u(\vec{r})
$$

with $u(r+\gamma)=u(r)$

Define the translation operator $T(\gamma)$

$$
T(\gamma) \varphi(x)=\varphi(x+\gamma)
$$

The eigen states of $t 1$ are ID irreps f the translation group

$$
T(\gamma) \varphi(x)=x_{\bar{k}}(\gamma) \varphi(x) \equiv \varphi(x+\gamma)
$$

write $\varphi(x)=e^{2 \pi i \vec{k} \cdot \vec{x}} \quad /$

$$
e^{2 \pi i k(x+\gamma)} u_{k}(x+\gamma)=e^{2 \pi i k \cdot \gamma} \cdot e^{2 \pi i k \cdot x} u_{k}(x)
$$

Bloch's theorem: $\Rightarrow u_{k}(x+\gamma)=u_{k}(x) \quad(\forall \gamma \in \Gamma)$

The delbert space $D=L^{2}\left(\mathbb{R}^{d}\right)$ is isotypicaly decomposed as

$$
\begin{array}{ll}
x \geq \oint_{T^{v}} d \bar{k} H_{\bar{k}} \\
= & T(\sigma) \cdot \varphi(x)
\end{array}
$$

$$
\mathcal{H}_{\bar{k}} \text { spanned by }\left\{\varphi(x): \varphi(x+\gamma)=x_{\bar{k}}(\gamma) \varphi(x)\right\}
$$

The eigenvalue problem
H_{k} acts on L^{2} functions on $T=\mathbb{R}^{d} / T$

$$
H_{k}=u H_{k^{\prime}} u^{-1} \xi^{u=e^{2 \pi i g t}} \quad \begin{aligned}
& k^{\prime}=k+z
\end{aligned}
$$

spectrum over different \bar{k} is the band structure.

$$
\begin{aligned}
& H \varphi(x)=E \varphi(x) \quad x \in \mathbb{R}^{d} . \\
& \forall k \in \bar{k} \Rightarrow H e^{2 \pi i k x} u_{k}(x)=E_{k} e^{2 \pi i k x} u_{k(x)} \\
& H_{k} u_{k}(x)=E_{k} u_{k}(x) \\
& \text { with } H_{k}=e^{-2 \pi i k x} H e^{2 \pi i k x}
\end{aligned}
$$

lIst Brillouin zone $\bar{k} \in(-\pi, \pi)$
\& 10 . orthogonality relations of matrix elements of reps; Peter-Weyl theorem.

Recall :() Basics of ref. rep.

$$
L^{2}(G)=\left\{f:\left.G \rightarrow \mathbb{C}\left|\int_{G}\right| f(f)\right|^{2} d \delta<\infty\right\}
$$

is a unitary $G \times G$
(2) V a rep. End $(V):=\operatorname{Hom}(V, V)$ is also a unitary rep of $G X G$.

$$
S \in E \text { nd }(v):\left(g_{1}, g_{2}\right) \cdot S=T\left(g_{1}\right) \cdot S \cdot T\left(q_{2}^{-1}\right.
$$

$$
\text { L: End }(V) \longrightarrow L^{\prime}(G)
$$

$$
S \longmapsto \longrightarrow \operatorname{Tr}_{v}\left(S T\left(\delta^{-1}\right)\right):=\varphi_{S}
$$

matrix unit $e_{i j} \longmapsto M_{i j}^{T r}{ }^{T}-1=\mu\left(8^{-1}\right)_{j i}$

$$
l: \underset{\mu}{\oplus} \frac{E_{n d}\left(V^{\mu}\right)}{\oplus_{i} S_{i}} \longmapsto \frac{L^{2}(G)}{\longrightarrow}
$$

Peter-Weyl theorem: G compact. Then there is an isomorphism of $G \times G$ representations

$$
L^{2}(G) \underline{u} \Phi_{\mu} \text { End }\left(V^{(\mu)}\right)
$$

where we sum over the distinct isomorphism class of each irnep exactly once.

Peter-weyl theorem is the consequence of Two statements.

1. Let (V, T) be a unitary irrep of a compact group G on a complex vector space V.

Then V is finite dimensional. (for a prop see GAN notes)
2. Let to be a compact group. The Hermitian inner product on $L^{2}(G)$

$$
\left\langle\varphi_{1}, \varphi_{2}\right\rangle:=\int_{G^{-}} \varphi_{1}^{+}(g) \varphi_{2}(g) d g
$$

with normalized Haar measure. s.t. The volume of to $\int_{G} d g=1$.
$L^{2}(G) \cong \cong a^{\mu} \underline{V^{(\mu)}}$
Let $\left\{V^{\mu}\right\}$ be a set of representations of distinct isomorphism classes of unitary irreps.
(Because of statement 1). For each $V^{(H)}$ choose an orthonormal (ON) basis $\omega_{i}^{(\mu)}$.

$$
\begin{aligned}
& i=1, \cdots, n_{\mu} . \quad n_{\mu}=\operatorname{dim} V^{(\mu)} \\
& T^{(\mu)}(q) \omega_{i}^{(\mu)}= \\
& \sum_{j=1}^{n_{\mu}} \mu_{j i}^{\mu}(z) \omega_{j}^{(\mu)}
\end{aligned}
$$

$M_{i j}^{\mu}$ form a complete orthogonal set of functions on $L^{2}(G)$.

$$
\left\langle\mu_{i_{1}, j_{1}}^{\mu_{1}}, \mu_{i_{1}, j_{2}}^{\mu_{2}}\right\rangle=\frac{1}{n_{\mu}} \delta^{\mu_{1} \mu_{2}} \delta_{i_{1}, i_{2}} \delta_{j_{1}, j_{2}}
$$

Proof. $\forall A: \quad V^{\mu} \rightarrow V^{\nu}$

$$
\begin{gathered}
\tilde{A}:=\int_{G} T^{\nu}(g) A T^{\mu}\left(g^{-1}\right) d g \\
T^{\nu}(h) \tilde{A}=\int_{G} T^{\nu}(h g) A T^{\mu}\left(q^{-1}\right) d g
\end{gathered}
$$

$$
\begin{align*}
& \stackrel{g}{\rightarrow} h^{-1} g \tag{6}\\
&= \int_{G} T^{v}(g) A T^{\mu}\left(\left(h^{-1} g\right)^{+}\right) d g \\
&=\left(\int_{G} T^{v}(f) A T^{\mu}(g)^{-1} d f\right) T^{\mu}(h) \\
&=\tilde{A} T^{\mu}(h)
\end{align*}
$$

\widetilde{A} is an intertwine

$$
\begin{aligned}
& V^{\mu} \xrightarrow{\widetilde{A}} V^{\nu} \\
& J^{\mu} \\
& V^{\mu} \xrightarrow{\widehat{A}} \downarrow^{T^{\nu}} V^{\nu}
\end{aligned}
$$

By Schuris lemma. $\quad \tilde{A}=\delta_{\mu \nu} \hat{A} . \quad \hat{A}=C_{A} \mathbb{I}_{\nu}$ Assign a basis for V^{μ} and V^{ν}

$$
\begin{aligned}
{[\tilde{A}]_{i a} } & =\frac{\delta_{\mu \nu} C_{A} \cdot \delta_{i a}}{}=\int_{a} d g\left[M^{\nu}(g) A M^{\mu}\left(g^{-1}\right)\right]_{i a} \\
& =\sum_{i^{\prime}, a^{\prime} a} \int_{G}^{d g} M_{i i^{\prime}}^{\nu}(g) A_{i^{\prime} a^{\prime}} M_{a^{\prime} a}^{\mu}\left(g^{-1}\right)(*)
\end{aligned}
$$

set $\mu=\gamma, i=a$, and take the trace.

$$
\begin{aligned}
& n c_{A}=\sum_{i, i, a^{\prime}} \int_{G} d g \mu_{i i}^{\mu}(\xi) A_{i^{\prime} a^{\prime}} M_{a^{\prime} i}^{\mu}\left(g^{-1}\right) \\
&=\int_{G} d z \operatorname{Tr}\left(\mu^{\mu}(g) A M^{\mu}\left(g^{\prime}\right)\right) \\
&=\int_{G} d g(\operatorname{Tr} A)=\operatorname{Tr} A \\
& \Rightarrow C_{A}=\frac{1}{n_{\mu}} \operatorname{Tr} A
\end{aligned}
$$

Now take A to be the matrix unit $e_{j k}$

$$
\left(\operatorname{Tr}_{r} e_{j k}=\delta_{j k}\right) .
$$

insert into (*)

$$
\begin{aligned}
& \Rightarrow \int_{G} d g \underline{\mu_{i j}^{\nu}(\xi)} \frac{\mu_{k a}^{\mu}\left(g^{-1}\right)}{\Downarrow}=\frac{1}{n_{\mu}} \delta_{\mu \nu} \delta_{i a} \delta_{j k} \\
& {\left[\mu^{\mu}(g)^{+}\right]_{k a}=\overline{u_{a k}^{\mu}}(f)} \\
& \Rightarrow\left\langle\mu_{a k}^{\mu}, \mu_{i j}^{\nu}\right\rangle=\frac{1}{n_{\mu}} \delta_{\mu \nu} \delta_{i a} \delta_{j k} \\
& \Rightarrow\left\langle M_{i_{1}, j_{1}}^{\mu_{1}}, \mu_{i_{1}, j_{2}}^{\mu_{2}}\right\rangle=\frac{1}{n_{\mu}} \delta^{\mu_{1} \mu_{2}} \delta_{i_{1}, i_{2}} \delta_{j_{1, j 2}}
\end{aligned}
$$

We have shown that $\left.3 \mu_{i j}^{\mu}\right\}$ is a set of orthogonal functions on $L^{2}(G)$
basis E completeness?

Let W be the subspace spanned by $\left\{M_{i j}^{\mu}\right\}$.
\Rightarrow The orthogonal complement ${W^{-1} \text { is }}$ is also a unitary rep. of $G \times G$.
see eff. Chap 3
of Sepanski, $\stackrel{!}{\Rightarrow}$ decomposable into unitary irreps V^{μ} "Compact Lie
groups". (GTM235) $\& f_{j} \delta_{j=1}^{n_{\mu}}$ transforms as V^{μ} under right regular rep.

$$
\begin{aligned}
R(g) f_{j} & =2 M(g)_{k j}^{\mu} f_{k} \\
f(h g) & =\sum M(g)_{k j}^{\mu} f_{k}(h) \\
h=\frac{1}{\Rightarrow} f(g) & =\sum_{k} f_{k}(1) M_{k g}^{M}(g) \quad(\forall g \in G)
\end{aligned}
$$

$f \in W$ contradiction with the assumption

$$
f \in W^{\perp}
$$

$$
\Rightarrow w^{\perp}=0
$$

[if with left reg. rep.

$$
\begin{aligned}
L(q) f_{j} & =\sum M^{\mu}(q)_{k j} f_{k} \\
f\left(\underline{\left.g^{-1} h\right)}\right. & =\sum \mu^{\mu}(\xi)_{k j} f_{k}(h) \\
n=1 \Rightarrow \underline{f(q)} & =\sum \mu^{\mu}\left(g^{-1}\right)_{k j} f_{k}(1) \\
& =\sum \bar{M}^{\mu}(f)_{j k} f_{k}(1)
\end{aligned}
$$

$\mathcal{F} \overline{M^{\mu}}{ }_{i j} J$ is another set of orthogonal basis J
$\Rightarrow\left\{M^{\mu}{ }_{u j}\right\}$ is complete.

