Recap. reducible \& irreps
redrecibility: $W C V$ invariant subspace
reducible rep: $\quad W \neq 0 . V$.
if not reducible : irrep.
$V=\oplus W_{i}:$ completely reducible.
reducibility depends on the field. K
SOL) $K=R$

$$
\left(\begin{array}{ll}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right.
$$

$$
\text { on } \mathbb{C} \quad \Rightarrow\left(\begin{array}{l|l}
e^{i \theta} & 0 \\
\hline 0 & e^{-i \theta}
\end{array}\right) \cong u(1)
$$

regular rep. (af finite G)
S_{3}

x	(1)	(123)	(12)
P_{1}	1	1	1
P_{1}^{\prime}	1	1	-1
P_{2}	2	-1	0

$$
\left|S_{3}\right|=6
$$

$$
x(e)=6
$$

$$
\frac{V^{\text {reg. rep }} \cong V^{P_{1}} \oplus V^{P_{1}^{\prime}} \oplus 2 V^{P_{2}}}{\Perp}
$$

$$
x(f \neq e)=0
$$

isotypic decomposition
is otypic compowents

$$
\begin{aligned}
& V \underline{\underline{u}} \oplus_{\mu} \oplus_{i=1}^{a_{\mu}} v^{(\mu)} \quad \underline{a \mu} . \\
& P: 1 \leftrightarrow 2 \\
& \left.\left.Z_{2} \quad \varphi_{s} \frac{1}{\sqrt{2}}(11\rangle+12\right\rangle\right) \quad P \mid \varphi_{s}=1 \varphi_{S} \\
& \left.\left|\varphi_{A}\right\rangle=\frac{1}{\sqrt{2}}(| | T-12\rangle\right) \quad \rho\left|\varphi_{A}\right\rangle=-\left|\varphi_{A}\right\rangle \\
& V \cong\left\{\left|\varphi_{S}\right\rangle\right\} \oplus\left\{\left|\varphi_{A}\right\rangle\right\} \\
& t
\end{aligned}
$$

- Schur's lemma

$$
\begin{aligned}
& \text { Lemm 1. } \quad V_{1} \xrightarrow{A} V_{2} \\
& T(8) \downarrow \quad \downarrow T_{2}(8) \\
& V_{1} \xrightarrow{A} V_{2} \\
& T_{2}(g) A=A T_{1}(q) \\
& \text { vi irreps over } \\
& \text { any field } K \\
& \Rightarrow A=0 \text { or isomorplisun } \\
& \text { (} \mathrm{lu}_{\mathrm{y}} \text { + surjective } \\
& \text { invertible }> \\
& \text { Pref, ker } \left.A:=\Sigma v_{1} \in V_{1} \mid A\left(u_{1}\right)=0\right\} \\
& \text { im } A:=\left\{v_{2} \in V_{2} \mid \exists v_{1} \in V_{1} \text {. s.t. } v_{2}=A\left(v_{1}\right)\right\}
\end{aligned}
$$

(1) $v_{1} \in \operatorname{ker} A . \quad A\left(T_{1}(8) v_{1}\right)=T_{2}(8)\left(A v_{1}\right)=0$
$\{$

$$
\Rightarrow T,(g) v, \in \operatorname{ker} A . \quad \forall z \in G .
$$

$\Rightarrow \operatorname{ker} A$ is an invariant subspace. (of V_{1})
ㅋ. $v_{1} \cdot u_{2}=A v_{1}$
(2)

$$
\begin{aligned}
v_{2} \in \operatorname{imA} \quad \begin{aligned}
T_{2}(f) v_{2} & =\frac{T_{2}(\xi) A v_{1}}{\epsilon v_{1}} \\
& =\frac{A\left(T_{1}(q) v_{1}\right)}{\operatorname{im} A}
\end{aligned},=1 .
\end{aligned}
$$

$\Rightarrow \operatorname{im} A$ is an invariant subspace. (of V_{2})
V_{1} is an irrep. $\Rightarrow \operatorname{ker} A$ is either O or \underline{V}
if $\operatorname{ker} A=V_{1}$. then $A=0$ (a)
else $\operatorname{ker} A=0$. A is injective (b.1)

$$
\begin{aligned}
&(\nexists v \neq 0 . A v=0) \quad\left(v_{1} \pm v_{2} \Rightarrow A v_{1} \neq A v_{2}\right) \\
& v_{1} \pm v_{2} \& A v_{1}=A v_{2} \\
& \Rightarrow A\left(v_{1}-v_{2}\right)=0 \\
& \Rightarrow v_{1}-v_{2} \in \operatorname{ker} A
\end{aligned}
$$

$\Rightarrow \operatorname{im} A$ is non-zero.
\Rightarrow im A is $V_{2}=A$ is surgective (b_{2})
$(b, 1)+(b .2) \Rightarrow A$ is an isomorphism.

Lemma Q. (T. V) is an irrep of G on
V a complex vector spaen
$A: V \rightarrow V$. intertwiner.
$\Rightarrow A(v)=\lambda v \quad(\lambda \in \mathbb{C})$

Prant. $A v=\lambda u$ over \mathbb{C}.
$(p(x)=\operatorname{det}(x \mathbb{1}-A)$ has a root in $\mathbb{C})$
Then the eigen space $C=\xi \omega$: Aw= $\omega \omega\}$ is non-zero.

$$
A \underline{T(f) \omega}=T(\xi) A \omega=\lambda \underline{T(\xi) \omega} \quad \forall \sigma \in G .
$$

$\Rightarrow C$ is a invariant subspace.

$$
\frac{V \text { is onirnep }}{\Rightarrow} C=V^{\text {non-trivial }}
$$

T counter example o \mathbb{R}^{2}

$$
\begin{aligned}
& \mathbb{Z}_{3} \cong \mathbb{A}_{3} \subset S O(2) \\
& \mathbb{R}^{2} \xrightarrow{R} R^{2} \\
& T(8) \downarrow \\
& \mathbb{R}^{2} \xrightarrow{R} R^{2}(8)
\end{aligned}
$$

$T(g) \cdot R=R \cdot T(g)$
\qquad
R is an intertwine

$$
R(\theta)=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

$$
\neq \lambda{\underset{\sim}{2}}_{2} \quad x
$$

move to $\left.\mathbb{C} \quad R(\theta)=e^{i \theta}, e^{-i \theta} \propto 1 \vee V\right)$

Implications for physics
\mathcal{L} is a Hilbert space. is a represemation of some symmetry group A. and completely reducible.

$$
\mu \triangleq \oplus_{\mu} H^{(\mu)}
$$

$$
\mathscr{H}^{(\mu)}:=D_{\mu} \otimes V^{(\mu)}
$$

H is an Hamiltonian $H: H \rightarrow \alpha$. is an interturner $\left[H . O_{G}\right]=0$

$$
\text { SHS }=\left(\begin{array}{l|l|l|l}
H^{\mu_{1}} & & & \\
\hline & H^{\mu_{2}} & & \\
\hline & & H^{\mu_{3}} & \\
\hline & & & \ddots
\end{array}\right)
$$

$$
H_{\left(i, \alpha_{i}\right)}^{\mu_{i}} \quad i=1, \cdots n_{\mu}=\operatorname{dim} U^{(\mu)}
$$

$\alpha=1 \ldots \alpha_{\mu}$ multiplociry

$$
H_{\left(i, \alpha_{1}\right)\left(i_{2}, \alpha_{2}\right)}^{\mu}=\frac{\delta_{i_{1, i}, i_{2}}}{\downarrow} \xlongequal{h_{\alpha_{1} \alpha_{2}}}
$$

Schur's lemma ${ }^{2}$

$$
A: \quad V^{\mu} \rightarrow V^{\mu} \propto 1_{n_{\mu}}
$$ the physical system

If an operaror $0 .\left[0 . D_{G}\right]=0$

$$
\begin{aligned}
& 0=\oplus_{\mu} 0^{(\mu n} \times \underline{a}_{\nu^{(\mu)}} \\
& \left\langle\varphi_{1}, O \varphi_{2}\right\rangle=0 \quad \text { of } \varphi_{1} \in \mu^{(\mu)} \cdot \varphi_{1} \in \mu^{(\nu)}(\mu \neq \nu) .
\end{aligned}
$$

Example

$$
\begin{aligned}
& \xrightarrow[\longrightarrow \rightarrow-\longrightarrow \longrightarrow]{\longrightarrow} \text { P.B.C } \\
& \hat{H}=-t \sum_{c_{i j}}, a_{i}^{+} a_{j}+h \cdot c . \\
& G^{n} C_{N}=\left\langle T \mid T^{N}=\mathbb{1}\right\rangle \\
& H_{t}=\left(\begin{array}{cccc}
0 & -1 & & -1 \\
-1 & 0 & -1 & \\
& -1 & 0 & \\
-1 & & \ddots & 0
\end{array}\right) \quad N \times N \text {-matrix. }
\end{aligned}
$$

basis Traneformanion:

$$
\begin{aligned}
& a_{k}^{+}=\frac{1}{\sqrt{N}} \sum e^{i k r_{i}} a_{i}^{+} \\
& \sum_{i} a_{i}^{+} G_{i \pm 1}=--=2 \cos k a a_{k}^{+} a_{k} \\
& \tilde{H}=-2 t \sum_{k} \cos k a a_{k}^{+} a_{k} \\
& -\frac{\tilde{H}}{2 t}=\left(\frac{\cos k_{1} a \mid}{} \left\lvert\, \begin{array}{l|l}
\cos k_{2} a & \\
H
\end{array}\right.\right) \quad k_{i}=\frac{22}{N} \cdot i \\
& \mu^{k}=\sum_{i} e^{i k \sigma_{i}} \mu^{(k)}
\end{aligned}
$$

Example 2. multiple symmetries

$$
\begin{align*}
H= & u \sum_{m} \hat{n}_{m \uparrow} \hat{n}_{m \downarrow}+(u-2 J) \sum_{m \neq m^{\prime}} \hat{n}_{m \uparrow} \hat{n}_{m^{\prime} \downarrow} \tag{6}\\
& +(u-3 J) \sum_{m_{<m}} \cdot \hat{n}_{m \sigma} \hat{n}_{m \prime \sigma} \\
& -J \sum_{m \neq m^{\prime}} \frac{d_{m p}^{+} d_{m \downarrow} d_{m \prime \downarrow}^{+} d_{m \cdot \uparrow}}{\Longrightarrow} \\
& +J \sum_{m \neq m^{\prime}} d_{m_{\uparrow}}^{+} d_{m \downarrow}^{+} d_{m^{\prime} \downarrow} d_{m \cdot \uparrow}
\end{align*}
$$

total number conserved. $[H . N] \Rightarrow N=I_{m} \hat{n}_{m}$
S_{z} conserved $\left[H . S_{t}\right]=0$
φS^{2} conserved $\left[H \cdot S^{2}\right]=0$
total global symmetry. $u(1)_{N} \otimes \|_{(1)_{S_{t}} \subset u(1) \otimes S_{N} u_{(2)}}$ $\operatorname{dim} \mu=\left(\mu_{1}\right)^{\otimes 2}$

$$
\mu_{1}=\{\phi, \uparrow, \psi, \uparrow \downarrow\}
$$

$$
=16 \quad 4^{N} \quad \operatorname{dim}^{2}=4
$$

n s
$u_{\left.11)_{N} \otimes S^{(}\right) S_{s^{2}}(0,0) \quad \operatorname{dim} 1}$

$$
\begin{aligned}
& \text { (1. } \frac{1}{2} \text {) } 4 \underset{4}{4} \times \frac{\text { 个 }}{\ddagger} \\
& \| \begin{array}{lll}
(2.0) & \frac{3}{3} & \text { A }-1+4 \\
(2.1) & 3 &
\end{array} \\
& \text { (3. } \frac{1}{2} \text {) } 4 \\
& \text { (4.0) } 1 \\
& H=\oplus \mathcal{H}^{\left(N_{i} \cdot s_{i}\right)} \\
& \text { wi.si }
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{(N=2 . S=0)}\left\{\begin{array}{l}
c_{2 \downarrow}^{+} c_{2 \uparrow}^{+}, \\
\frac{1}{\sqrt{2}}\left(c_{1 \downarrow}^{+} c_{2 \uparrow}^{+}-c_{1 \uparrow}^{+} c_{2 \downarrow}^{+}\right) \\
C_{1 \downarrow}^{+} c_{1 \uparrow}^{+}
\end{array}\right. \\
& \text {- } \downarrow \text { - } \quad ~ t \uparrow \rightarrow-4 \rightarrow-J \\
& \text { 个 } \downarrow u-2 J \quad \text { - 轮 } \rightarrow \text { 价 - J } \\
& \text { - } \uparrow \text { 个 } \quad 3 \mathrm{~J} \\
& H^{(2.0)}=\left(\begin{array}{ccc}
u & 0 & J \\
0 & \frac{u-J}{0} & 0 \\
J & u
\end{array}\right) \rightarrow \begin{array}{ll}
& -J+u \\
& \frac{1}{\sqrt{2}}\left(C_{1 山}^{+}\right. \\
& -J+u \\
& \\
& J+u \\
& \\
& \frac{1}{\sqrt{2}}\left(c_{1 山}^{+}-c_{2}^{+} c_{1 \uparrow}^{+}+c_{2 \uparrow}^{+}\right) \\
&
\end{array}
\end{aligned}
$$

－Pontrygin duality

Abelian group $S \leftrightarrow u(1)$

Definition．Let \mathcal{S} be an Abelian group． The Pontryagin dual group \hat{s} ． is the group of homomorphisms $\operatorname{Hom}(s, u(1))$ ．For $\left.x_{1}, x_{2} \in \operatorname{Hom}(s) u(1)\right)$ define their product

$$
\begin{gathered}
\left(x_{1} \cdot x_{2}\right)(s):=x_{1}(s) \cdot x_{2}(s) \\
\left(x_{1} \cdot x_{2}\right)\left(s_{1} s_{2}\right)=x_{1}\left(s_{1} s_{2}\right) \cdot x_{2}\left(s_{1} s_{2}\right)
\end{gathered}
$$

$$
\begin{aligned}
& =x_{1}\left(s_{1}\right) x_{1}\left(s_{2}\right) x_{2}\left(s_{1}\right) x_{2}\left(s_{2}\right) \\
& =\left[\left(x_{1} \cdot x_{2}\right)\left(s_{1}\right)\right]\left[\left(x_{1} x_{2}\right)\left(s_{2}\right)\right]
\end{aligned}
$$

$\Rightarrow x_{1} \cdot x_{2}$ is a homomorphism.
$\hat{S}=\operatorname{Hom}(S . u(1))$ is also an Abelvan group
Remarks 1. \hat{s} is the group of all complex one-dimensional unitary representations of S.
2. Elements of \hat{s} are called characters (\hat{s} character group)

