Recap. reducible and irreducibce representations.
(irrep)
(T, V). \exists invoriant scobspace $\omega \quad(\omega \neq 0, U)$
$\Rightarrow W$ is a sabrep of U.
reducible representations:
(1) $w \subset u . \quad\left(\begin{array}{cc}\mu_{1} & \mu_{12} \\ 0 & \mu_{22}\end{array}\right)$
$V \backslash W$ is not invariant indecomp-sable
(2) $V \cong \bigoplus_{i}^{\oplus} w_{i} \quad T l_{\omega i}$ is a rep.
completely
nducible
F.D. rep of Abdian grups
\Rightarrow completely reducible.
$\theta=u(1)$

$$
\mu(z)=\operatorname{diag}\left\langle\rho_{n_{1}}(z) \cdot \rho_{n_{2}}(z) \cdots \rho_{n_{d}}(z)\right\rangle
$$

reducibility depenals on the fielal.
$\operatorname{so(2)}\left(\begin{array}{cc}\operatorname{sis} \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ irrep on \mathbb{R}

$$
\Rightarrow\left(\begin{array}{c|c}
e^{i \theta} & 0 \\
\hline 0 & e^{-i \theta}
\end{array}\right) \text { reducible on } c
$$

Examples (cont.)

$$
\begin{aligned}
& 5 \cdot S_{3} \cong D_{3} \text { on } \mathbb{R}^{3}=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\} \\
& T(\phi) e_{i}=e_{\phi(i)}
\end{aligned}
$$

(1)

$$
\begin{aligned}
& u_{0}=e_{1}+e_{2}+e_{3} \\
& T(\phi) u_{0}=\sum_{i} e_{\phi(i)}=u_{0}
\end{aligned}
$$

$W=$ span $\left.\$ u_{0}\right\}$ inveriant subspace.
(2) $V \backslash w \cdot w^{\perp}=\operatorname{span}\left\{u_{1}, u_{2}\right\}$

$$
\text { a. }\left\{\begin{array}{l}
u_{1}=e_{1}-e_{2} \\
u_{2}=e_{2}-e_{3}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
T((12)) u_{1}=-u_{1} \\
T((12)) u_{2}=u_{1}+u_{2}
\end{array}\right.
$$

$$
M((2))=\left(\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right)
$$

$$
\left\{\begin{array}{l}
T\left((23) u_{1}=u_{1}+u_{2}\right. \\
T((23)) u_{2}=-u_{2}
\end{array}\right.
$$

$$
M((13))=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

$$
\begin{aligned}
M((23)) M((13))=M((123)) & =\left(\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & -1 \\
1 & -1
\end{array}\right) \quad x=-1
\end{aligned}
$$

unitary representation w.r.t. non-O.N is not a unitany matrix
b.

$$
\begin{aligned}
& T[(23)] \sigma_{1}=-\frac{1}{2} \sigma_{1}+\frac{\sqrt{3}}{2} \sigma_{2} \\
& T[(23)] \sigma_{2}=\frac{\sqrt{3}}{2} \sigma_{1}+\frac{1}{2} \sigma_{2} \\
& M[(23)]=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right) \quad x=0
\end{aligned}
$$

$\mathbb{R}^{3} \underline{\underline{u}} W \oplus W^{\perp}$
6. $S_{3} \longrightarrow S_{n}$
$u_{0}=\sum e_{i}$ invariant subspace.

$$
\begin{aligned}
& L=\left\{x \sum_{i} e_{i}, x \in R\right\} \\
& C^{\perp}=\left\{\sum_{i} x_{i} e_{:} \quad \mid \sum_{i} x_{i}=0, x_{i} \in R\right\}
\end{aligned}
$$

\Rightarrow Both L and L^{\perp} are irreducible $v \cong L \oplus L^{\perp}$

Proof that L^{\perp} is irreducible.
of $\equiv u \subset L^{\perp}$ invariant subspace

$$
u=x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{n} e_{n} \in U \quad \Sigma x_{i}=0
$$

WLO\& resume $x_{1} \neq x_{2} \quad$ (of all x_{i} equal. \quad then $u=0$)

$$
\begin{aligned}
& u-\tau(12) u=\left(x_{1}-x_{2}\right)\left(e_{1}-e_{2}\right) \in u \\
& \Rightarrow e_{1}-e_{2} \in u
\end{aligned}
$$

$u=x_{1} \cdot e_{2}+x_{2} \cdot l_{3}-$ act $(123 \cdots n)$ on u.

$$
\begin{aligned}
\Rightarrow e_{i}-e_{i+1} & \in u \\
\Rightarrow \operatorname{dim} u & \geqslant n-1 \quad \& u \subset L^{\perp} \quad \operatorname{dim} u \leqslant n-1 \\
\Rightarrow \operatorname{dim} u & =n-1 \\
u & =L^{\perp}
\end{aligned}
$$

7. examples of indecomposable reps.
a. $u(x)=\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right) \quad x \in \mathbb{R}, \mathbb{C}$.

$$
\left.u(x) u_{y}\right)=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & x+y \\
0 & 1
\end{array}\right)
$$

$\left\{\binom{\alpha}{0}\right\}$ is an invariant subspace

$$
\left(\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\binom{\alpha}{0}=\binom{\alpha}{0}\right)
$$

b. $\quad B(y)=\left\{\left.\left(\begin{array}{lc}\cosh y & \sinh y \\ \sinh y & \cos \eta\end{array}\right) \right\rvert\,-\infty<y<\infty\right\}$

$$
\begin{aligned}
& B(\eta)=\exp \left(\begin{array}{ll}
\left.\eta\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right) \\
T(B(\eta))=\left(\begin{array}{ll}
1 & \eta \\
0 & 1
\end{array}\right) \\
B\left(y_{1}\right) B\left(y_{2}\right)=B\left(\eta_{1}+\eta_{2}\right) \\
\Rightarrow T\left(\eta_{1}\right) T\left(y_{2}\right)=T\left(y_{1}+y_{2}\right)
\end{array}\right.
\end{aligned}
$$

c. $A \in G L(n, k)$

$$
\begin{aligned}
T(A) & =\left(\begin{array}{cc}
1 & \log |\operatorname{det} A| \\
0 & 1
\end{array}\right) \\
T(A) T(B) & =\left(\begin{array}{cc}
1 & \log |\operatorname{let} A|+\log |\operatorname{det} B| \\
0 & 1
\end{array}\right) \\
& =T(A B)
\end{aligned}
$$

d. Symorphic Space groups $T X_{R} P G$. semidirect product.
$R \in O(3)$
$\vec{\imath} \in T \quad\{R \mid \vec{\tau}\} \in$ Euclidean group

$$
\begin{aligned}
& \left\{R_{1} \mid \vec{\tau}_{1}\right\}\left\{R_{2} \mid \vec{\tau}_{2}\right\} \vec{\gamma}=\left\{R_{1} \mid \vec{\tau}_{1}\right\}\left(R_{2} \vec{\gamma}+\vec{\tau}_{2}\right) \\
& =R_{1} R_{2} \vec{r}+\left(R_{1} \vec{\tau}_{2}+\vec{\tau}_{1}\right) \\
& =\left\{R_{1} R_{2} \mid R_{1} \vec{\tau}_{2}+\vec{\tau}_{1} \zeta \vec{r}\right.
\end{aligned}
$$

$$
\left(\vec{\tau}_{1}, R_{1}\right),\left(\vec{\tau}_{2}, R_{2}\right)=\left(\vec{\tau}_{1}+R_{1} \vec{\tau}_{2}, R_{1} R_{2}\right)
$$

Matrix rep $\left(\begin{array}{l|l}\frac{3}{R} & 1 \\ 2 \\ 0 & 1\end{array}\right)$

Proposition. Let (T, V) be a unitary rep. of an inner product space V. and $W \subset V$ is an invariant subspace Then W^{\perp} is an invariant subspace.

$$
\left(w^{\perp}=\{y \in V \mid\langle y, x\rangle=0 . \forall x \in W\}\right.
$$

Proof . $\quad \forall z \in G . y \in W^{+}$:

$$
\begin{aligned}
& \langle T(8) y, x\rangle=\left\langle y, T\left(\frac{+}{8}\right) \times\right\rangle \\
& \text { 厅 } \\
& =\underbrace{\langle y}_{\epsilon W^{\perp}} \cdot \underbrace{\left.T\left(f^{-1}\right) x\right\rangle}_{\in W} \\
& =0 \\
& \Rightarrow T(8) y \in w^{\perp}
\end{aligned}
$$

$\Rightarrow w^{\perp}$ invariant subspace.

Corollaries:

1. F.D. unitary rep, are always completely reducible.
V. reducible $\Rightarrow V=W \oplus w^{\perp}$

$$
\begin{gathered}
? w^{\prime} \oplus w^{\prime \perp} \\
\downarrow \\
v=\oplus w_{i}
\end{gathered}
$$

2. For compact groups. reps are fid. unitanizable.
\Rightarrow completely reducible
3. Finite G. Regular rep. $L^{2}(G)$ is completely reducible.

$$
\begin{aligned}
& \left(\begin{array}{lll}
L_{g} \cdot \delta_{h}=\delta_{g h} & \delta \text {-basis } & \delta_{g}(h)=\int_{0}^{1} \text { other }
\end{array}\right) \\
& |G|-\operatorname{dim} \text { rep. }
\end{aligned}
$$

Example of reg. rep of S_{3}

$$
\begin{aligned}
& \left\{\begin{array}{l}
x(e)=\left|S_{3}\right|=6 \\
x(z \neq e)=0
\end{array}\right. \\
& \text { suMs }=\begin{array}{ll|l}
\hline 1 & & \\
\hline & 0 & \\
\hline & & 0
\end{array} \\
& , \quad 1
\end{aligned}
$$

character

\prime				
P_{1}	1	1	1	
P_{1}^{\prime}	1	1	-1	
Γ_{2}	2	-1	0	

$$
\begin{aligned}
V^{\text {reg. }}= & x P_{1} \oplus y P_{1}^{\prime} \oplus z P_{2} \\
& x+y+2 z=6 \\
& \left\{\begin{array}{l}
x+y-z=0 \\
x-y+0 \cdot z=
\end{array}\right.
\end{aligned} \quad \Rightarrow\left\{\begin{array}{l}
x=y=1 \\
z=2
\end{array}\right.
$$

$$
V^{\text {reg. }}=V^{P_{1}} \oplus V^{P_{1}^{\prime}} \oplus 2 V^{P_{2}}
$$

- Isotypic components

Assume then the set of irreps. cup to isomorphism) of G is countable choose a representative $\left(T^{(1)} \cdot U^{(1)}\right)$ for each isomorphism clans

$$
v \underline{\underline{u}} \oplus_{\mu}\left(\oplus_{i=1}^{a_{\mu}} v^{(\mu)}\right)
$$

a_{μ} is the number of times $V^{(\mu)}$ appears in the decomposition.
$\oplus_{i=1}^{a \mu} V^{(\mu)}$ is the isotypic component of V associated to μ.

We can identify

$$
\begin{aligned}
V^{(\mu)} \oplus V^{(\mu)} \oplus \cdots \oplus V^{(\mu)} & \cong k^{a_{\mu} \otimes V^{(\mu)}}=: a_{\mu} V^{(\mu)} \\
& C T(g)=\mathbb{1}_{a_{\mu}}(T) T\left(f^{(\mu)}\right.
\end{aligned}
$$

Example rep Z_{2} on a vector space (as linear operators)

$$
T: V \rightarrow V \quad T \in \operatorname{He}_{0} m(V, V)
$$

$$
T^{2}=\mathbb{1}
$$

projector: $P_{ \pm}=\frac{1}{2}(1 \pm T)$
+1 eijenspuce
Z_{2} has two 10 irreps. $\rho_{+}(1)=p_{+}(\sigma)=1$ $\{1,0\}$

$$
\left\{\begin{array}{l}
\rho-(1)=4 \\
\rho-(\sigma)=-1
\end{array}\right.
$$

$$
V \underline{\underline{u}} V^{+} \otimes \rho_{-} \oplus V^{-} \otimes \rho_{+}
$$

$$
\begin{aligned}
& V^{+}:=\underline{\operatorname{ker}\left(P_{+}\right)}=\left\{v \left\lvert\, \begin{array}{l}
P_{+} v=0 \\
T v=-v
\end{array}\right.\right\}=\underline{P-(V)} \\
& \rightarrow \text { ripen space } f T \\
& \left.v^{-}=\operatorname{ker}\left(P_{-}\right)=f u \mid P_{-v} \Rightarrow \quad\right\}=P_{+}(v) \\
& T v=v
\end{aligned}
$$

$$
\begin{array}{lll}
V=\operatorname{span}\{11>, 12>\} & \left.\tilde{1}, \frac{\frac{1}{\sqrt{2}}(11>+12>)}{} \quad \sigma \hat{1}\right\rangle=\hat{10} \\
& \left\lvert\, \tilde{-1}>=\frac{1}{\sqrt{2}}(11>-12>)\right. & \sigma|\tilde{-1}\rangle=-1 \hat{-1}\rangle
\end{array}
$$

- Schur's lemma
recall an intertwine A is a morphism of G-spaces

$$
\begin{aligned}
& V_{1} \xrightarrow{A} V_{2} \\
& T_{1}(g) \downarrow_{A} T_{2}(\xi) \\
& V_{1} \xrightarrow{A} V_{2} \\
& T_{2}(g) A=A T_{1}(q) \quad\left(\nRightarrow \quad T_{2}(g)=A T_{1}(f) A^{-1}\right) \\
& A \text { wight be } 0 \text {. }
\end{aligned}
$$

Lemma 1. Let G be any group. Let $V_{1} . V_{2}$ be vector spaces over any field k. 3,t. They are carrier spaces of irreps of G.

If $A: V_{1} \longrightarrow V_{2}$ is an intertwine between these irreps. then A is
either zero or an isomorphism.

Lemma - Suppose ($T \cdot V$) is an irrep of G. on a complex vector space V. by linear transformation. and
$A: V \rightarrow V$ is a \mathbb{C}-linear intertwine

$$
(A T(f)=T(f, A, \forall \& \in G)
$$

Then A is proportional to the identity transformation

$$
\begin{aligned}
& A(v)=\lambda v . \quad(\lambda \in \mathbb{C}, \forall v \in V) . \\
& \left(E_{n d_{\mathbb{C}}}^{G}(v) \cong \mathbb{C}\right)
\end{aligned}
$$

