Recap

$$
\int_{G} f(g) d g=\int_{G} f(h g) d g \text { Haar measure }
$$

$$
\begin{aligned}
& L L^{2}(G)=\left\{f: G \rightarrow \mathbb{C} \left\lvert\, \frac{\int_{i i}|f(g)|^{2} d z<\infty}{\langle f \cdot f\rangle}\right.\right. \\
& \int|f(g)|^{2} d g=\int\left|f\left(h_{1} g h_{2}^{-1}\right)\right|^{2}
\end{aligned}
$$

$G \times G$ action on G :

$$
\begin{aligned}
& \left(g_{1}, g_{2}\right) \longmapsto L\left(g_{1}\right) L\left(g_{2}^{-1}\right) \\
& \left(g_{1}, f_{2}\right) \cdot g_{0}=g_{1} g_{0} g_{2}^{-1}
\end{aligned}
$$

\rightarrow induced action on Map (G, \mathbb{C})

$$
\begin{aligned}
& {\left[\left(f_{1}, f_{2}\right) \cdot f\right)(h):=f\left(g_{1}^{-1} h g_{2}\right)} \\
& \text { (ThU) } \\
& \left(g_{1} \cdot f_{2}\right) \cdot s=T\left(q_{1}\right) \cdot s \cdot T\left(f_{2}\right)^{-1} \quad s \in \operatorname{End}(v) \\
& \operatorname{Fnd}(V) \longrightarrow L^{2}(G) \\
& s \longmapsto f_{s} \\
& f_{S}:=\operatorname{Tr}_{u}\left(S T\left(8^{-1}\right)\right) \\
& \operatorname{End}(v) \xrightarrow{ } \operatorname{Mop}(G, \mathbb{C}) \\
& \downarrow T_{\text {End }} \text { (v) } \quad \downarrow \text { Treg.rep } \\
& \text { End }(v) \longrightarrow \operatorname{Map}(G, \mathbb{C})
\end{aligned}
$$

fake s as matrix unit $e_{i j}$

$$
\Rightarrow f_{s}=\mu_{j i}\left(g^{-1}\right)
$$

Example. $\quad G=\left\{1 \cdot \omega \cdot \omega^{\omega^{2}}\right\}$

$$
\begin{aligned}
& \left\lvert\, \delta_{j}\left(\omega^{k}\right)= \begin{cases}1 & j=k \bmod 3 \\
0 & \text { else }\end{cases} \right. \\
& \left(\frac{1}{|G|} \sum_{g} \delta_{i}(g) \delta_{j}(g)=\delta_{i, j}\right) \\
& \frac{\left(L(w) \delta_{0}\right)(z)=\delta_{0}\left(\omega^{-1} g\right)=\delta_{1}(q)}{\delta_{1}} \\
& \delta_{2} \\
& \text { so } \\
& \begin{array}{ll}
M(\omega)=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) & \begin{array}{l}
\left.\xi \mu_{i_{1}}\right\} \\
M\left(\omega^{2}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
\end{array} \begin{cases}M_{11}(\omega)=0 \\
\left(\omega^{2}\right) & 0 \\
\left(1=\omega^{3}\right)=1\end{cases}
\end{array} \\
& M\left(\omega^{3}\right)=M(1)=\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right)\right.
\end{aligned}
$$

zee. \quad g. ea $=e_{g a}$

	g_{1}	g_{2}	g_{3}	g_{4}
	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

$$
\begin{aligned}
& \left\langle a, b \mid \quad a^{2}=b^{2}=(a b)^{2}=1\right\rangle \\
& \delta_{g_{i}}\left(z_{j}\right)= \begin{cases}1 & i=j \\
0 & \text { else }\end{cases}
\end{aligned}
$$

$$
\left(L\left(q_{2}=a\right) \cdot \delta q_{i}\right)(q)
$$

$$
=\delta z_{i}\left(a^{-1} z\right)
$$

$$
=\delta_{c q_{i}(\delta)}
$$

$$
\begin{aligned}
& L(a) \delta_{e}=\delta_{a} \\
& L(a) \delta_{a}=\delta_{e} \\
& L(a) \delta_{b}=\delta_{a b}=\delta_{c} \\
& L(a) \delta_{c}=\delta_{a c}=\delta_{b}
\end{aligned}
$$

$$
\left.\left.\begin{array}{l}
M(a)=\left(\left.\begin{array}{l|l}
0 & 1 \\
1 & 0
\end{array} \right\rvert\,\right. \\
\hline 0
\end{array} \right\rvert\, \begin{array}{l}
0 \\
0
\end{array}\right)
$$

- Reducible \& irreducible representations

Recall direct sum of reps

$$
\begin{aligned}
& T_{v \oplus \omega}=T_{v \oplus} \oplus T_{\omega} \\
& \mu_{v \oplus \omega}=\left(\begin{array}{c|c}
\mu_{v} & 0 \\
\hline 0 & \mu_{\omega}
\end{array}\right)
\end{aligned}
$$

$$
? M \stackrel{?}{?} S M S^{-1}=\left(\begin{array}{c|c|c}
M_{1} & 0 & 0 \\
\hline 0 & \mu_{2} & 0 \\
\hline 0 & 0 & \mu_{1}
\end{array}\right)^{d} d
$$

\Rightarrow we want to "reduce" a rep. of
large dimensions into smaller ones.

Definition Let $W \subset V$ be a linear subspace of carrier space V. of a group rep.
$T: G \rightarrow G L(U)$, Then W is invariant under T. (W is an invariant subspace) if $\quad \forall g \in G . w \in W$

$$
T(g) \cdot w \in W
$$

Example

1. \& $\overrightarrow{0}$ \& v

Ky plane is an invariant subspace
3. canownal rep. of S_{n} :

$$
\begin{gathered}
T(\phi): \vec{e}_{i} \longrightarrow \vec{e}_{\phi(i)} \\
\vec{v}=\vec{e}_{1}+\vec{e}_{2}+\cdots+\vec{e}_{n} \\
T(\phi) \vec{v}=T(\phi) \sum_{i} \vec{e}_{i}=\sum_{i} \vec{e}_{\phi(i)}=\vec{v}
\end{gathered}
$$

s_{3} :

$$
\overbrace{e_{1}}^{\sum_{i} \vec{v} \vec{v}_{2}} \quad \text { body diagonal }
$$

4. Matrix representation:

$$
\begin{aligned}
M: G & \longrightarrow G L(n, k) \\
\mu_{i j}: G & \longrightarrow k \\
g & \longmapsto M_{i j}(z)
\end{aligned}
$$

Consider the linear span of $\mu_{i j}$ with fixed i

$$
R_{i}=\operatorname{span}\left\{M_{i j}, j=1, \cdots n\right\} \subset L^{2}(G)
$$

and right action.

$$
\begin{aligned}
\left(R(g) \cdot \mu_{i j}\right)(h) & =\mu_{i j}(h g) \quad \in R_{i} \\
\Delta & =\sum_{s} \frac{\mu_{s j}(g) \cdot \mu_{i s}(h)}{\in k} \xlongequal[\Delta \Delta]{ }
\end{aligned}
$$

coefficients
$\Rightarrow R_{i}$ is an invariant subspace
(under right acton)
$\mathcal{L}_{j}=\operatorname{span}\left\{\mu_{i j} . \quad i=1, \cdots n\right\}$
is invariant (under left action)

$$
\mu=L R=\operatorname{span}\left\{\mu_{i j}, i, j=1 . \cdots n\right\} \quad \subset L^{2}(G)
$$

is invariant under $E \times E$-action

$$
\left.c\left(f_{1}, g_{2}\right) \cdot f\right)(h)=f\left(f_{1}^{-1} h f_{2}\right)
$$

If we only consider the left-refula rep.

$$
\mathcal{L} \cong \oplus_{i=1}^{n} L_{i}
$$

every $L i$ is an invariant subspace of $1 R$
$\Rightarrow L^{2}(E)$ is highly reducible.

Definition. A representation (T, V) is reducible of there is a proper, nontrivial invariant subspace $W \subset V(w \neq V, 0)$ If V is not reducible it is an irreducible representation. ("irrep")

Remarks

1. $\forall v \in V, V^{\prime}=\operatorname{span}\{T(f) v, \forall z \in G\}$ is an invariant space $T(g)(T(f) v)=T(\&, g) v \in U^{\prime}$ If (T.V) is an irrep. $\quad V^{\prime}=V$ v is called a cyclic vector.

Note that the existance of a cyclic vector does not imply that the representation is irreducible.
canonical rep of Sn_{n}.

$$
T(\phi): e_{i} \rightarrow e_{\phi(i)}
$$

e_{1} is a cyclic vector.

Zen is a proper, nontrivial invariant subspace.
2. (T. V) a representation. $\exists W \subset V$ an invariant subspace. We can restrict T to $W \cdot\left(T l_{w}, W\right)$ is a subrepresentation of (T, V)

$$
\left.T\right|_{w}(f)=\left.T(z)\right|_{w}
$$

We wick write T instead of TIu if
no confusion arises.
If T is unitary on V. Then it is unitary on W.

$$
\left\langle T v_{1}, T v_{2}\right\rangle=\left\langle v_{1}, v_{2}\right\rangle \quad \forall v_{i}(\epsilon W) \subset v
$$

3. (T. w) is subrep of (T.V)
choose an ordered basis \& w, .. $\left.w_{k}\right\}$
Then it can be completed to an ordered basis $\left.\& w_{1}, \cdots w_{k}, u_{k+1}, \cdots u_{n}\right\}$

$$
\left\{\begin{array}{l}
T(f)\left(w_{i}\right)=\left(M_{11}(f)\right)_{j i} w_{j}+\underline{\left(M_{21}(f)\right)_{a_{i}} u_{a}} \\
T(g)\left(u_{a}\right)=\left(M_{12}(f)\right)_{j a} w_{j}+\left(\mu_{22}(f)\right)_{b a} u_{b}
\end{array}\right.
$$

in matrix form $(\{\omega\}, \delta u\})^{\frac{11}{v}}\left({\overline{\mu_{11}} \mid}_{\mu_{12}}^{\mu_{21}} \begin{array}{l}\mu_{22}\end{array}\right)$
W invariant $\longrightarrow M_{21}=0$.
$\Rightarrow T(f)\left(w_{i}\right)=\sum_{j} M_{11}(f)_{j i} w_{j}$
$\Rightarrow M_{11}$ is a representation on W.
M_{22} is not a rep on V IW.

If we want to further simploff the representation Define a change of basis $\left(\begin{array}{ll}1 & \frac{5}{1} \\ 0 & 1\end{array}\right)$

$$
\begin{aligned}
& (w, u)\left(\begin{array}{cc}
1 & s \\
0 & 1
\end{array}\right)=(w, w S+u) \equiv\left(w, u^{\prime}\right) \\
& \left(\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right)^{+1}=\left(\begin{array}{cc}
1 & -s \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{cc}
1 & -S \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\mu_{11}(f) & \mu_{12}(f) \\
0 & \mu_{22}(f)
\end{array}\right)=\left(\begin{array}{cc}
\mu_{11}(f) & \mu_{12}(f)-S M_{22}(f) \\
\mu_{22}(f)
\end{array}\right) \\
& \Rightarrow \mu_{12}(f)=S M_{22}(f) \cdot(\forall f \in G)
\end{aligned}
$$

such an S exists for completely reducible representations.
4. Consider the quotient space V / W

$$
\begin{aligned}
v_{1} \sim v_{2} \text { iff } v_{1}-v_{2} & \in W \\
T\left(g_{)}(v+w)\right. & =T(q)(v)+W \\
T\left(q_{1}\right) T\left(g_{2}\right)(v+W) & =T\left(g_{1}\right)\left(T\left(f_{2}\right) v+W\right) \\
& =T\left(g_{1} g_{2}\right) v+W \\
& =T\left(g_{1}, g_{2}\right)(v+W)
\end{aligned}
$$

from above:

$$
\begin{aligned}
& T(f)\left(u_{a}\right) \\
\Rightarrow & \underline{\left(\mu_{12}(f)\right)_{j a} w_{j}}+\underline{\left(\mu_{22}(f)\right)_{b a} u_{b}} \\
\Rightarrow & T(f)\left(u_{a}+w\right) \stackrel{\sim}{=}\left(\mu_{22}(f)\right)_{b a} u_{b}+w .
\end{aligned}
$$

$\Rightarrow \mu_{22}$ is the representation on the quotient space v / w.

- Complete reducibility

Defuition. A representation (T, V) is called completely reducible of it is isomorphic to a direct sum of representations $\omega_{1} \oplus \omega_{2} \oplus \cdots \oplus \omega_{n}$
where wi are irreps. Thus. There is a basis in which the representation matrices look like

$$
M(f)=\left(\begin{array}{ccc}
M_{1}(f) & 0 & - \\
0 & \mu_{22}(8) & 0 \\
1 & 0 & \ddots \\
1 & & \mu_{33}(f)
\end{array}\right)
$$

If a representation is reducible but not completely reducible, it is "indecomposable" irreps are completely reducible
Examples.

$$
\begin{aligned}
& \text { 1. } G=z_{2} \underline{y} S_{2}=\{e, \tau\} \\
& M(e)=\left(\begin{array}{c}
1 \\
-0, \\
\hline
\end{array}\right) \quad \mu(\tau)=\left(\begin{array}{cc}
0 & 1 \\
1,0
\end{array}\right)=(T . \cup) \\
& A=\frac{\sqrt{2}}{2}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \Rightarrow \widehat{\mu}(\tau)=A^{-1} \mu A=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \hat{M}(e)=\left(\left.\frac{1}{0} \right\rvert\, \frac{0}{0}\right), \hat{M}(\tau)=\left(\begin{array}{c|c}
1 & 0 \\
\hline 0 & -1
\end{array}\right) \\
& \rho+(e)=\rho_{+}(\tau)=1 \quad \text { trivial rep. } \\
& \rho-(e)=1, \quad \rho_{-}(\tau)=-1 \quad \tau \sin \\
& e=() \quad \tau=(12)
\end{aligned}
$$

The original rep. $\left(T, V=\mathbb{R}^{2}\right)$ is completely reducible. $\quad(T . V) \cong \underline{\varrho} \rho_{+} \oplus \rho_{-}$
2. $G=u(1)=\{z \in \mathbb{C} \quad| | z \mid=1\} . \quad V=\mathbb{C}$

$$
\begin{aligned}
& \rho_{n}(z)=z^{n} \quad \text { for } \forall n \in \mathbb{Z} . \\
& \rho_{n}\left(z, z_{2}\right)=\left(z_{1} z_{2}\right)^{n}=z_{1}^{n} \cdot z_{2}^{n}=\rho_{n}\left(z_{1}\right) \rho_{n}\left(z_{2}\right)
\end{aligned}
$$

in equivalent for different n.
3. Finite-dimensional representations of

Abelian groups are completely reducible on \mathbb{C}.
(Any complex irrep of an Abelian group is one Choosing an orthonormal (ON) bases set. Sit. all $M(8)$ are commuting unitary matrices. over the complex field.

$$
\mu\left(q_{i}\right) \mu\left(f_{j}\right)=\mu\left(g_{j}\right) M\left(f_{i}\right) \quad \forall g_{i}, \xi_{i} \in G .
$$

$\Rightarrow M$'s can be simultaneously diagonalized.

$$
M(t)=\operatorname{diaf}\left\{\lambda_{1}(t) \cdot \lambda_{2}(z), \cdots \lambda_{n}(t)\right\}
$$

$\Longrightarrow G=u(1)$ any. fid. rep. on $v \simeq \mathbb{C}^{d}$.

$$
\begin{aligned}
& M(z)=\operatorname{diag}\left\{\rho_{n_{1}}(z), \rho_{n_{2}}(z), \ldots \rho_{n_{d}}(z)\right\} \\
& V \triangleq \rho_{n_{i}} \oplus \rho_{n_{2}} \oplus \ldots \oplus \rho_{n_{d}} .
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\operatorname{So}(2): R(\theta) & =\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \text { on } \mathbb{R}^{2} \\
& =\left(\frac{e^{i \theta}}{0} \frac{0}{0} e^{-i \theta}\right.
\end{array}\right)
$$

completely reducible on \mathbb{C}.
irreducible on \mathbb{R}.

