HW. P12. $\quad \phi_{1}(u)=u \quad \phi_{2}(u)=u^{*}$

$$
\operatorname{tr}(u)=\operatorname{tr}\left(u^{*}\right)
$$

$\operatorname{su}(2) \quad\left(\begin{array}{cc}\alpha & \beta \\ -\bar{\beta} & \frac{\beta}{\alpha}\end{array}\right) \quad|\alpha|^{2}+|\beta|^{2}=1$

$$
\begin{aligned}
\operatorname{tr} & =\alpha+\bar{a}=\bar{\alpha}+\alpha \\
\tau u \tau^{-1} & =u^{*} \quad r=i \sigma^{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

P13. $H<G . \quad z H=H z$

$$
\begin{aligned}
& H, g H \\
& H, H z
\end{aligned} \Rightarrow z H=H \delta
$$

P14. $A_{n} \Delta S_{n} \quad\left[S_{n}: A_{n}\right]=2$
$\phi \in A_{n} \quad \phi$: even transposition prod.

$$
\tau \phi \tau^{-1} \in A_{n} \quad \Rightarrow \tau A_{n}=A_{n} \tau
$$

P15 $g[a, b] \delta^{-1}=\left[g a g^{-1}, g b g^{-1}\right] \in[G, G]$
(2) $H \varangle G$.
G / H is abelian $\Leftrightarrow[G, G] \subset H$

$$
\begin{aligned}
\Rightarrow & (a+H)(b H)=a b H=(b H)(a H)=b a+1 \\
\Rightarrow & a b h_{1}=b a h_{2} \\
& \left.\frac{a^{-1} b^{-1} a b=h_{2} h_{1}^{-1} \in H}{[a .}, b^{-1}\right) \in H
\end{aligned}
$$

$\theta /_{[G, G]}=H_{r}(G) \quad$ first homology of G.

P16. $D \subset \operatorname{cin}(2) \quad D=\left(\begin{array}{cc}e^{i \theta} & 0 \\ 0 & e^{-i \theta}\end{array}\right) \div u(1)$
(a) $g D=D g \quad u=\left(\begin{array}{cc}\alpha & \beta \\ -\bar{\beta} & \bar{\alpha}\end{array}\right)$
$u d u^{-1} \in D$
$\Rightarrow \alpha=0, \quad \rho=0$

$$
\begin{aligned}
& N_{s u(2)}(D)=\left\{\left(\begin{array}{cc}
0 & \bar{z} \\
-\bar{z} & 0
\end{array}\right),|z|=1\right\} U=\left(\begin{array}{cc}
0-1 \\
1 & 0
\end{array}\right) D \\
& \left.\uparrow\left(\begin{array}{cc}
z & 0 \\
0 & \bar{z}
\end{array}\right),|z|=1\right\} \Rightarrow 0 \\
& =D V\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) D \\
& N_{\text {Suon }}(D) / D=\left\{\left(\begin{array}{ll}
7 & 0 \\
0 & \frac{7}{7}
\end{array}\right) D=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) D\right. \\
& \left(\begin{array}{cc}
0 & -\bar{z} \\
z & 0
\end{array}\right) D=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) D \quad y \geqslant z_{2} \\
& u d u^{-1}=\tilde{d} \quad \tilde{d}=\left(\begin{array}{cc}
z & \frac{z}{z} \\
0 & z
\end{array}, u \in D\right. \\
& \tilde{d}=\left(\begin{array}{ll}
\bar{z} & 0 \\
0 & z
\end{array}\right) \quad u \in\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) D
\end{aligned}
$$

(d) $N_{\text {suncin }}(D)\left\{\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right\},\left\{\begin{array}{cc}0 & 7 \\ -i & 0\end{array}\right\},\left\{\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right\}$

P17. effective frous action $\phi: G \rightarrow S_{x}$
(a) effective: $\forall g \neq 1$ ヨx,$g x \neq x$
$\Rightarrow \phi(f)$ is nontrivial $\phi(g) \neq 1$
homo. inj. $\Rightarrow \phi(z)=1$ iff $z=1$
(b)

$$
\begin{aligned}
& f_{1} \cdot x=x \quad \Rightarrow\left(g_{1} f_{2}\right)^{x}=x \\
& \text { \& } \cdot x=x \\
& \forall z_{i j} \in H \Rightarrow g_{i} \delta_{j} \in H \\
& f_{i}(f \cdot x)=f_{i} x^{\prime}=x^{\prime} \Rightarrow \forall f \\
& g\left(g_{i} \cdot x\right)=f \cdot x=x^{\prime} \quad g_{i f}=z z_{i} \quad g: \in+1
\end{aligned}
$$

(c)

$$
\begin{gathered}
G / H \times x \rightarrow x \\
(g H) \cdot x:=f \cdot x \\
\forall x \in X \quad(g H) x=x \\
\Leftrightarrow g x=x \\
\Leftrightarrow g \in H \\
\Leftrightarrow g H=H=1_{G / H}
\end{gathered}
$$

$18 \quad$ Burnside's lemma. $\mid \#$ orb $\left.\left|=\frac{1}{|G|} \sum_{j+G}\right| x^{g} \right\rvert\,$
transitive \Leftrightarrow one orbit. $\forall . x . y . \exists 8$. st

$$
\begin{aligned}
& |G|=\sum_{\delta \in G}\left|x^{8}\right| \\
& \sum_{\delta \in G}\left|x^{8}\right| \geqslant \sum_{\delta \in G}|=|G| \\
& \left|x^{e}\right|=|x|>1 \\
& \exists z \cdot\left|x^{8}\right|=0
\end{aligned}
$$

Recap Hear measure

$$
\begin{aligned}
& \frac{1}{|G|} \sum_{z \in G} f(g)=\frac{1}{|G|} \sum_{z \in G} f(h z) \rightarrow \int_{G} d z \\
& \int_{G} f(h g) d z=\int_{G} f(g) d g \quad(\forall h \in G)
\end{aligned}
$$

deft invariance.
compact/finite left = right up to scale
locally compact left \neq right

$$
\begin{align*}
& \int_{G} f(\delta) d\left(h^{-1} g\right)=\int_{G} f\left(f, d z \Rightarrow d\left(h^{-1} g\right)=d g\right. \\
& G_{1}=R_{>0}^{*} \\
& \int f(g) d g= \\
& \frac{d x}{x} \quad \frac{d(x / a)}{x / a}=\frac{d x}{x} \\
& g \mapsto q^{\prime}=q_{\circ} q \\
& \prod_{i j} d g_{i j}^{\prime} \longmapsto\left|\frac{\partial\left(\delta_{11}^{\prime}, f_{12}^{\prime} \cdot \cdots \delta_{n n}^{\prime}\right)}{\partial\left(\delta_{1} \cdots \delta_{n n}\right)}\right| \prod_{i j}^{j_{j}} d f_{i} \\
& g_{i j}^{\prime}=\sum_{k}\left(f_{0}\right)_{i k} f_{k j} \\
& \frac{\partial g_{i j}^{\prime}}{\partial g_{k l}}=\left(g_{0}\right)_{i k} \delta_{j l} \\
& \left|d e+g_{0}\right|^{n}
\end{align*}
$$

$(T . V)$ a rup on an inner produar space

$$
\begin{aligned}
&\langle v, \omega\rangle_{2}:=\int_{G}\langle T(f) v, T(f) \omega\rangle, d g \\
&\langle T(h) v, T(h) \omega\rangle_{2}=\rho_{G}\langle T(f) v, T(h g) w\rangle_{1} d f \\
&=\langle v, \omega\rangle_{2}
\end{aligned}
$$

$\longrightarrow H=\sum_{8} \pi_{18}^{\top} T(8$, finite grom.
8.6. Regular representation

Let b be a group. Then there is a left avion of $G \times G$ on Q.

$$
\begin{aligned}
& \left(q_{1}, g_{2}\right) \longmapsto L\left(q_{1}\right) R\left(g_{2}^{-1}\right) \\
& \left(g_{1}, g_{2}\right) \cdot g_{0}=g_{1} g_{0} g_{2}^{-1}
\end{aligned}
$$

restrict to $G \times\{1\} .11\} \times G$.

$$
\left(z_{1}, \mathbb{4}\right) \cdot q_{0}=\&, \xi_{0}
$$

$\left(1 . q_{2}\right) \cdot g_{0}=f_{0} q^{-1}$

There is an associated induced action on $\operatorname{Map}(G \cdot \mathbb{C}$

$$
\begin{aligned}
{\left[\left(g_{1} \cdot g_{2}\right) \cdot f\right)(h): } & =f\left(q_{1}^{-1} h g_{2}\right) \\
& =: f^{\prime}(h)
\end{aligned}
$$

\Rightarrow the vecorov apace $(G, C)=f f: G \rightarrow \mathbb{C}\}$
becomes a representation space of $G \times G$.

$$
\left.\begin{array}{r}
\left(\left[\left(f_{1}, f_{2}\right)\left(g_{3}, f_{4}\right) f\right](h)=\left\{\left(g_{1}, g_{2}\right)\left[\left(g_{3}, g_{4}\right) f\right]\right\}(h)\right) \\
G \times G \rightarrow \operatorname{Hom}(f f\} . f f\})=: \text { End }(f f \xi) \\
(\text { Bud-morphism: } \varphi=V \rightarrow v \\
\text { End }+ \text { iso }=\operatorname{Aut}(v)
\end{array}\right)
$$

Now. equip G. with a left and right invariant Haar measure and consider the Hilbert space

$$
\begin{aligned}
& L^{2}(G)=\left\{f: G \rightarrow \mathbb{G} \left\lvert\, \frac{\left.\rho|f(\delta)|^{2} d z<\infty\right\}}{\langle f \cdot f\rangle}\right.\right. \\
& \text { (inphysics } \quad \int|\varphi(x)|^{2} d x=1(<\infty) \\
& \left.\int \overline{\varphi(x)} \phi(x) d x \leqslant \sqrt{\int|\varphi(x)|^{2} d x \int\left(\left.\phi(x)\right|^{2} d x\right.}<\infty\right)
\end{aligned}
$$

Then $G \times G$ action preserves the L^{2}-property and it is unitary. (because of the Hoor measure)

$$
\int|f(g)|^{2} d g=\int\left|f\left(h_{1} g h_{2}^{-1}\right)\right|^{2} d \delta
$$

Definition. The representation $L^{2}(G)$ is known as the regular representation of G.

If we restria $G \times G$ to subgroups $G \times\{1\}$ or $\{1\} \times G$. then

$$
(L(h) \cdot f) g:=f\left(h^{-1} z\right)
$$

is the left regular representation

$$
(R(h) \cdot f)(f)=f(\& h)
$$

the right regular representation.

Suppose (T, V) is a representation of G.
We can define $E \times G$ action on End $(V)=\operatorname{Hom}(V, V)$

$$
\begin{aligned}
& \forall S \in \operatorname{End}(V) \\
& \qquad\left(f_{1} \cdot f_{2}\right) \cdot S=T(f) \cdot S \cdot T\left(f_{2}\right)^{-1}
\end{aligned}
$$

For finite-dimensional V. we can define a map.

$$
\begin{aligned}
& c: \text { End }(U) \longrightarrow L^{2}(G) \\
& S \longmapsto f_{s} \\
& f_{s}:=T_{r}\left(S T\left(q^{-1}\right)\right)
\end{aligned}
$$

which is equivariant (c is an intertwine)

$$
\begin{aligned}
\text { End }(v) & \longrightarrow \operatorname{Map}(G \cdot \mathbb{C}) \\
d T_{\text {End }}(v) & \\
& \downarrow T_{\text {reg. }} \cdot \operatorname{rep} . \\
\text { End }(v) & \operatorname{Map}(G \cdot \mathbb{C})
\end{aligned}
$$

$$
\begin{aligned}
\left(h_{1}, h_{2}\right) f_{s} & =f_{s}\left(h_{1}^{-1} g h_{2}\right) \\
& =\operatorname{Trv}\left(S T\left(h_{2}^{-1} \&^{-1} h_{1}\right)\right) \\
& =\operatorname{Trv}\left(S T\left(h_{2}\right)^{-1} T\left(q^{-1} T\left(h_{1}\right)\right)\right. \\
& =\operatorname{Trv}\left(\underline{\left(h_{1}, h_{2}\right) S T\left(q^{+}\right)}\right) \\
& =f_{\left(h_{1}, h_{2}\right) s}(\&)
\end{aligned}
$$

Equip U with an ordered paris $\{v i\}$

$$
T(f) \cdot v_{i}=\sum_{j} \mu(f)_{j i} v_{j}
$$

and take ρ to be the basis of End (V)

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \cdots\left(\begin{array}{ccc}
0 & 1 & 00 \\
0 & 0 & 0 \\
i
\end{array}\right)
$$

matrix unit $e_{i j},\left[e_{i j}\right]_{a b}=\delta_{i a} \delta_{j b} \& \begin{aligned} & 1 \text { on }(i, j) \\ & 0 \text { otherwise }\end{aligned}$

$$
\begin{aligned}
f_{s} & =T_{r_{v}}\left(S T\left(g^{-1}\right)\right) \\
& =T_{r}\left(\sum_{b} \delta_{i a} \delta_{j b} \mu_{b c}\left(g^{-1}\right)\right) \\
& =\sum_{a c}\left[\delta_{i a} \mu_{j c}\left(\delta^{-1}\right)\right] \delta_{a c} \\
& =\mu_{j} i\left(g^{-1}\right)
\end{aligned}
$$

(if replace V by its dual space V^{V}

$$
\begin{aligned}
& \mu^{v}(8)=\left[\mu\left(8^{-1}\right)\right]^{\text {tr }}=\mu(8)^{\text {tr.-1 }} \quad \text { (last lecture)) } \\
& f_{s}=\mu_{i j}(8)
\end{aligned}
$$

$\Rightarrow f_{s}$'s are linear combinations of matrix elements of rep. of G.

Example. 1. $G_{1}=\mu_{3}=\left\{1, w \cdot w^{3}\right\}$

$$
\begin{aligned}
& \delta_{j}\left(\omega^{k}\right)=\left\{\begin{array}{cc}
1 & j=k \operatorname{mad} 3 \\
0 & e l s e
\end{array}\right. \\
& \left(L(\omega) \cdot \delta_{0}\right)(f)=\delta_{0}\left(\omega^{-1} g\right)=\delta_{1}(f) \\
& L(\omega) \delta_{0}=\delta_{1} \\
& L(\omega) \delta_{1}=\delta_{2} \\
& L(\omega) \delta_{2}=\delta_{0}
\end{aligned} \quad L(\omega)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)
$$

