6. group action.
orbits., fireal points, stabilizer
Theorem. (sta b-orbit)

$$
\begin{aligned}
& O_{G^{\prime}}(x) \stackrel{\underline{n}}{ } G / G^{x} \\
& \left|O_{G}(x)\right|=\left[G_{t}: G^{x}\right]
\end{aligned}
$$

So (3) acts on S^{2}. $\operatorname{Orbso(3)}=\delta^{2}$

$$
S^{2} \cong S_{0(3)} S_{\tan _{S=(3)}(\hat{z})}(\hat{z}) \cong S O(2)
$$

$s u(2)$ on $\mathbb{C}^{2} \quad S^{3} \triangleq s u(2)$
7. G-action on itself.
(1) H a subgroup, right action on G.

$$
\begin{aligned}
& \quad g H=\{g h \cdot u \in H\} \quad l \text { eft-cosets } \\
& |g H|=|H|
\end{aligned}
$$

+ Lagrange. Finite G.

$$
|G| /|H|=[G=H]
$$

(2) action by conjugation.
orbits / conjugacy class

$$
C(h)=\left\{g^{h} g^{-1} \quad \delta \in G\right\}
$$

Stab-oob. $|C(f)|=\left[G: C_{G}(f)\right]$
${ }^{\rightarrow} \operatorname{stab}_{G}(f)$
centralizer
Finte G. $\left.\begin{array}{rl}|C(z)|=\frac{|G|}{\mid C_{G(8) \mid}} \\ +|G|=\Sigma|C(z)|\end{array}\right\}$

$$
\begin{aligned}
&+|G|=\sum|C(z)| \\
& \Rightarrow|G|=\sum_{\{(f)| \rangle} \frac{|G|}{\left|C_{G}(f)\right|} \quad \text { class equation". } \\
& \longrightarrow \Phi|G|=P^{n} \Rightarrow z(G) \neq\{e\}
\end{aligned}
$$

(2) (Candle). $P||G|$

$$
\Rightarrow \exists \delta \in G \cdot g^{P}=1
$$

\longrightarrow class function.
function f on θ.

$$
f\left(g_{0} g^{-1}\right)=f\left(\&_{0}\right) \quad \forall g_{0}, \& \in G .
$$

\longrightarrow meet rep.

$$
X_{T}(f)=T_{r} T(f) \quad \text { character }
$$

\longrightarrow equivalent rep. $\varphi_{1} \cdot \varphi_{2} \quad \exists g_{2}$ sit.

$$
\varphi_{2}(f)=f_{2} \varphi_{1}\left(f_{1}\right) g_{2}^{-1} \quad \forall f_{1} \in G .
$$

$$
\begin{aligned}
& \text { mat. rep. } T_{1}: G \longrightarrow G L(n . k) \\
& \quad T_{2} G \longrightarrow G L(n . k) \\
& \exists S \in G L(n, K) \text { st. } \\
& T_{2}(\delta)=S T \cdot(f) S^{-1} \quad \forall g \in G .
\end{aligned}
$$

8. Morphisms of Ge spaces / equivarient map

$$
\begin{aligned}
& f: x \rightarrow x^{\prime} \\
& x \xrightarrow{f} x^{\prime} \quad f(\dot{2}(8, x))=\phi^{\prime}(g, f(x)) \\
& \dot{\Phi}(\xi) \downarrow \xrightarrow{f}{ }^{\downarrow} \Phi^{\prime}(z) \quad f(z x)=8 \cdot f(x)
\end{aligned}
$$

q. The symmetric group S_{n}.

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3
\end{array}\right)=(1243)
$$

(1). unique cycle decomposition. of $\phi \in S_{n}$
(2) r-cycles are conjugate
lo conjugacy classes labeled by partitions of n.

St. $\vec{\lambda}=\{3.2 .1\}$

Young diagram.
sign: $S_{n} \rightarrow \mathbb{Z}_{2}$
len. of cycle deumpsition

$$
A_{n} \ll P_{n} \quad \operatorname{sgn}\left(p \in A_{n}\right)=1
$$

why s_{n} ?
Finite G_{0}. of arden n.
embed S_{n}
ξ
U Some subgroup of S_{1}

$$
D_{6} \cong S_{4} C S_{8} \quad\left(\left|D_{4}\right|=8\right)
$$

10. quotient groups
$N \subset G$. then G / J has a natural group structure

$$
\begin{aligned}
&\left(g_{1} N\right) \cdot(g, N):=\left(f_{1} f_{2}\right) \cdot N \\
& \mu: G \longrightarrow G / N \\
& f \longrightarrow g N \\
& \operatorname{ker} \mu=N .
\end{aligned}
$$

1st. isomorphism theorem $\mu: G \rightarrow G^{\prime}$ G/ker $\mu \cong \mathrm{im} \mu$.
11. exact sequence.

$$
\begin{gathered}
\rightarrow G_{i-1} \xrightarrow{f_{i-1}} G_{i} \xrightarrow{f_{i}} G_{i+1} \\
\text { im } f_{i-1}=\operatorname{ker} f_{i}
\end{gathered}
$$

SES. $1 \overrightarrow{f_{0}} G_{1} \xrightarrow{f_{1}} G_{2} \xrightarrow{f_{2}} G_{3} \xrightarrow[f_{3}]{ } 1$
(1) Ker $f_{1}=\operatorname{im} f_{0}=\{1\} \quad f_{1}$ injective
(2) $\operatorname{im} f_{2}=\operatorname{ker} f_{3}=G_{3} \quad f_{2}$ surjective.

$$
1 \rightarrow N \rightarrow G \rightarrow Q \longrightarrow 1
$$

G is an extensibn of Q by N.

$$
\left\{\begin{array}{l}
N \cong H 4 G \\
Q \cong G / N
\end{array}\right.
$$

\longrightarrow Central extenson: $N \subset Z(G)$

$$
1 \rightarrow \mathbb{2}_{2} \rightarrow S u(2) \rightarrow S O(2) \longrightarrow 1
$$

8. Representarin theory
8.0. Some notivation

1 In θM. symmetries are represented by unitary / linear, arriunitany/antidinear operators in Hilbert space H.
(Wigner. 1931; Weinberg. QFT-1. 1995)

If the Hamiltonian H has certain summery. represented by $u . \quad u^{+} H u=H . /[H \cdot u]=0$

They have the same eigen stares.
\Rightarrow simultaneous doagonalization.

$$
\begin{aligned}
& H=t \sum_{\langle i j,} C_{i}^{+} c_{j}+h \cdot c . \\
& c_{k}^{+}=\sum_{i} e^{i k r_{i}} c_{i}^{+} / c_{i}^{+}=\sum_{k} e^{-i k r_{i}} c_{k}^{+} \\
& \Rightarrow \tilde{H}=2 t \sum_{k_{i}} \cos k_{i} a c_{k}^{+} c_{k} \\
& k_{i}=\frac{2 \pi i}{O N} \quad i=0, \cdots N-1 \\
& \tilde{F}=\left(\left.\begin{array}{rl}
\frac{2 \cos k_{1}}{} & \\
2+\cos k_{2} \\
& 4
\end{array} \right\rvert\,\right. \\
& \text { eigen spae labeled by } k_{i}
\end{aligned}
$$

2 symmetry \Leftrightarrow selection rules $[H, W=0$

$$
\Rightarrow \exists S \text {. st }
$$

block-dvagonal.

$$
\mathrm{SHS}^{-1}=\begin{array}{|c|c|c|}
\hline \mathrm{H}_{1} & 0 & 0 \\
\hline 0 & \mathrm{H}_{2} & 0 \\
\hline 0 & 0 & \mathrm{H}_{3} \\
\hline
\end{array}
$$

symmetry sectors labeled by (a set of) different quantum numbers
e.g. for Fermions $Q N=$ particle number

$$
\left\{\begin{array}{l}
S_{s} \\
S_{z}
\end{array}\right.
$$

3. Conservation laws.

Noether's theorem:
continuous symmetry \Leftrightarrow classically conserved curer.

Review of basic definitions
(1) $G \rightarrow G L(V)$
\checkmark some vector space over field K $G L(V)$ / Ant (V): invertible linear transformations $\quad v \rightarrow u$.
(2) rep. of G is a group homomorphism.

$$
\begin{aligned}
T: G & \longrightarrow G L(U) \\
g & \longmapsto T(f)
\end{aligned}
$$

(T, V) denotes the representation.

$$
T\left(f_{1}\right) T\left(f_{2}\right)=T\left(f_{1} f_{2}\right) \quad \forall f_{1}, f_{2} \in Q .
$$

V is called the carrier space / representation space.

Given an ordered basis of fintte dim V.

$$
\begin{gathered}
\left\{\hat{e}_{1}, \cdots \hat{e}_{n}\right\} \Rightarrow G L(v) \Longrightarrow G L(n, k) \\
T(f) \hat{e}_{i}=\sum_{j} M(f)_{j i} \hat{e}_{j}
\end{gathered}
$$

$$
\begin{aligned}
T\left(f_{1}\right)\left[T\left(f_{2}\right) \hat{e}_{i}\right] & =T\left(f_{1}\right) \sum_{j} M\left(f_{2}\right)_{j i} \hat{e}_{j} \\
& =\sum_{j} M\left(f_{2}\right)_{j i}\left(T\left(f_{1}\right) \hat{e}_{j}\right) \\
& =\sum_{j} M\left(f_{2}\right)_{j i} \sum_{k} M\left(f_{1}\right)_{k j} \hat{e}_{k} \\
& =\sum_{k} C M\left(f_{1}\right) M\left(g_{0} J_{k i} \hat{e}_{k}\right.
\end{aligned}
$$

$$
T\left(g_{1}\right) T(f)=T(g, g) \Leftrightarrow M(f) M(f)=M(\&, g)
$$

In terms of group actions. rep. of G is a G-action on a vector space that respects linearity

$$
\begin{array}{ll}
q \cdot\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)=\alpha_{1} f \cdot v_{1}-\alpha_{2} f \cdot v_{2} \quad \begin{array}{l}
v_{i} \in V \\
\\
\\
\quad \in \in
\end{array}
\end{array}
$$

Examples

1. rep. of degree/dim 1 .

$$
T: G \rightarrow \mathbb{C}^{*}
$$

for element of order $n . z^{n}=1 \in$

$$
T(g)^{n}=1 \quad T(8) \text { are roots of } 1
$$

$$
\mathbb{Z}_{3} \cong \mu_{3} \cong A_{3}=<8, \quad T(8)=\omega=e^{i \frac{2 \pi}{3}} / e^{i \frac{4 \pi}{3}}
$$

if take $T(\xi)=1$ trivial representation (unit)
2. "regular representation" of a finite group. (more to be aliscussed later)

Let $\operatorname{dim} V=|G-|=n$. with an ordered basis set $\{\hat{e} z\}(z \in G)$

$$
T\left(g_{1}\right) \cdot \hat{e}_{g_{2}}=\hat{e}_{g_{1} g_{2}}
$$

V	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

$$
\begin{gathered}
\left\langle a . b\left(a^{2}=b^{2}=(a b)^{2}=e\right\rangle\right. \\
\underline{n} 2_{2} \times 22_{2} \\
e=(0.0) \\
a=(1.0) \\
b=(0.1) \\
c=(1.1)
\end{gathered}
$$

$$
\begin{aligned}
& T_{\text {reg }}{\underset{2}{2} \times 2_{2} \rightarrow G(C V)(\operatorname{dim} v=4)} \\
& V=\left\{\hat{e}_{e}, \hat{e}_{a}, \hat{e}_{b} . \hat{e}_{c}\right\} \\
& \begin{array}{lll}
T(e) \hat{e}_{f}=\hat{e}_{g} & T(e)=\underline{u}_{b} & \left\{\begin{array}{l}
X(T)=\operatorname{dim} V \\
=4 \\
X(T) \\
X(a) \hat{e}_{e}=\hat{e}_{a}
\end{array}\right. \\
T(a) \hat{e}_{a}=\hat{e}_{e} & T(a)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
T(a) \hat{e}_{b}=\hat{e}_{c} & \\
T(a) \hat{e}_{c}=\hat{e}_{b} &
\end{array} \\
& \begin{array}{ll}
T(e) \hat{e}_{f}=\hat{e}_{z} & T(e)=\underline{1}_{b} \\
T(a) \hat{e}_{e}=\hat{e}_{a} & \left\{\begin{array}{c}
X(T(e)=\operatorname{din} v \\
=4 \\
X(T(z \neq e))=0
\end{array}\right. \\
T(a) \hat{e}_{a}=\hat{e}_{e} & T(a)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
T(a) \hat{e}_{b}=\hat{e}_{c} & \\
T(a) \hat{e}_{c}=\hat{e}_{3} &
\end{array}
\end{aligned}
$$

3. more generally. G aces on set X

$$
x \mapsto 8 x
$$

Let v be a vector space with basis $\left\{e_{x}\right\}(x \in x)$

$$
T(g) e_{x}=e_{g x}
$$

permutation representation.

$$
\text { 4. } \begin{aligned}
T=\mathbb{R} \cdot \mathbb{R} \cdot \mathbb{C}: G & \longrightarrow G L(\mathbb{C}) \\
n & \longmapsto a^{n}\left(a \in \mathbb{O}^{*}\right) \\
n_{1}+n_{2} & \not a^{n_{1}} \cdot a^{n_{2}}=a^{n_{1}+n_{2}}
\end{aligned}
$$

5. $G=\mathbb{R} \cdot \mathbb{R} \cdot \mathbb{C} \cdot T: G \longrightarrow G(2, k)$

$$
n \longmapsto\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right)
$$

6. $G=G L(n, k) \rightarrow$ one-dim, nepresentation

$$
\begin{aligned}
& T(f):=|\operatorname{det} g|^{\mu} \\
& T\left(g_{1} f_{2}\right)=\left|\operatorname{det}\left(f_{1} s_{2}\right)\right|^{\mu}\left.=\left|\operatorname{det} g_{1}\right|^{\mu} \mid \operatorname{der} f_{2}\right)^{\mu} \\
&=T\left(\delta_{1}\right) T\left(g_{2}\right)
\end{aligned}
$$

7. $1+1$ dim Lorentz group

$$
\begin{aligned}
& x^{0^{\prime}}=\cosh \theta x^{-}+\sinh \theta x^{\prime} \\
& x^{\prime 1}=\sinh \theta \pi^{0}+\cosh \theta x^{\prime} \\
& \binom{x^{\prime}}{x^{\prime}}=\left(\begin{array}{cc}
\cosh \theta & \sinh \theta \\
\sinh \theta & \cosh \theta
\end{array}\right)\binom{x^{0}}{x^{\prime}}=B(0)\binom{x^{0}}{x^{1}} \\
& \left(B(\theta) \in O(1,1)=\left\{A \mid A^{\top} y A=\eta\right\}, \eta=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\right) \\
& B\left(\theta_{1}\right) \cdot B\left(\theta_{2}\right)=B\left(\theta_{1}+\theta_{2}\right)
\end{aligned}
$$

Definition．Let $\left(T_{1}, V_{1}\right)$ and $\left(T_{2}, V_{2}\right)$ be two neps．of a group G ．An intertwined （intertwining map 交结快射）between These two reps it a linear transformation $A: V_{1} \longrightarrow V_{2}$
st．$\forall \& \in G$ ．the following diagram Commutes．

$$
\left.\begin{array}{rl}
V_{1} & \xrightarrow{A} V_{2} \\
T_{1}(f) \downarrow & \\
V_{1} & \stackrel{A}{\longrightarrow} T_{2}(f) \\
V_{2}
\end{array}\right]=\begin{aligned}
T_{2}(f) A & =A \cdot T_{7}(f)
\end{aligned}
$$

A is an equivariant linear map of G_{T} spaces $V_{1} \rightarrow V_{2}$

Home $\left.^{(} U_{1}, v_{2}\right)$ ：Vector space of all intertwiners．

Definition．Two reps $\left(T_{1}, V_{1}\right)$ and $\left(T_{2}, V_{2}\right)$ core equivalent $\left(T_{1}, V_{1}\right) \succeq\left(T_{2}, V_{2}\right)$ if there is an intertwine $A: V_{1} \rightarrow V_{2}$ which is an isomorphism．That is

$$
T_{2}(f)=A T_{1}(f) A^{-1} \quad(\forall f \in G)
$$

- Unitary representations

Let V be a complex vector space over 6.
Define the inner product on V as a sesquilineor mop $\cdot \subset \cdot, V \times V \rightarrow \mathbb{R}$ obeying
(1) $\langle u .>$ is linear for all fixed v.
(2) $\langle w \cdot v\rangle=\langle\overline{u \cdot w}\rangle$
(3) $\langle u, v\rangle \geqslant 0$. $=0$ off $v=0$
sesfuilinear:

$$
\begin{aligned}
& \left\langle v, \alpha_{1} w+\alpha_{2} w_{2}\right\rangle=\alpha_{1}\left\langle v_{1} \cdot w_{1}\right)+\alpha_{2}\left(v_{1} \cdot w_{2}\right) \\
& \left\langle\alpha_{1} v_{1}+\alpha_{2} v_{2}, w\right\rangle=\bar{\alpha}\left\langle v_{1} \cdot w\right\rangle+\bar{\alpha}_{2}\left(v_{2} . w\right\rangle
\end{aligned}
$$

Definition, Let V be an inner produa space

A unitary rep is a rep (V,U)
s.t. $\forall f \in G \quad U(g)$ is a unitary operator on V ie.

$$
\begin{aligned}
\langle u(\delta) v . u(\delta) w\rangle=\langle v . w\rangle & \forall u, w \in v \\
& \forall g \in G .
\end{aligned}
$$

Definition. If a rep (V, T) is equivaleur to a unitany rep. then it is said to be unitarizable.

