Recap:

1. $\phi \in S_{n}$

$$
\begin{aligned}
& \phi=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 山 & d
\end{array}\right) \equiv(1243)=(2431)=(4312) \cdots \\
& \left(\begin{array}{ll}
132) \\
\kappa & 1243) \\
k & 120
\end{array}\right)=(1)(24)(3)=(24)
\end{aligned}
$$

2. $\phi \in$ Sn unique cycle decomposition
\downarrow
complete fact. into
disjoint cycles

$$
\left.\left(\begin{array}{lll}
1 & 2 & 3 \\
21 & 4 \\
21 & 6
\end{array}\right)=(12)(34)=(12)\left(3424^{3} 4\right)(34)\right]
$$

3. Why S_{n} ?

Cay ley's theorem.
$A \backsim a$ subgroup of S_{G}
$\forall a \in G . \quad L a: \quad G \rightarrow G$
$x \mapsto a x$

$$
\left(\begin{array}{c}
G=\left\{g_{1}, g_{2}, \cdots g_{n}\right\} \\
L_{a} \cdot \theta=\left\{a g, a g, \cdots a g_{n}\right\} \\
L_{a} \cdot L_{a}=L_{a b} \\
L_{i} G \rightarrow \text { in } \theta \subset S_{G} \\
a \rightarrow L_{a}
\end{array}\right.
$$

T "regulor representation" of S_{1}. see eq. Zee.
Consder S_{n}, n-dim carrier space V

$$
\begin{aligned}
& \vec{e}_{i}=\{00 \cdot \underbrace{}_{i-T h} 0.00\}^{\top} \quad V=\operatorname{span}\left\{\vec{e}_{i}\right\} \\
& \phi \in S_{n}: \quad T(\phi): \vec{e}_{i} \rightarrow \vec{e}_{\left.\phi_{i}\right)} \\
& \begin{array}{c}
T(\phi) \vec{e}_{i}=\sum_{j=1}^{n} A\left(\phi_{j}{ }_{j i} \vec{e}_{j} \quad A \in G L(n . k)\right] \\
=
\end{array}
\end{aligned}
$$

non-zen element $(i, \phi(i))$

		e	a	b	c
	e	e	a	b	c
1	a	a	e	c	b
3	b	b	c	e	a
4	c	c	b	a	e

$$
\begin{gathered}
\phi: V \rightarrow \operatorname{im}(V) c S_{4} \\
\phi(a)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right) \\
T(a)=\left(\begin{array}{llll}
0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

4. generaiors of S_{n}.

$$
(12 \cdots r)=(1 r)(1 r-1) \cdots(12)
$$

(1) $\{(1 r)(r \leq n)\}$
(2) $\left\{\mathscr{G}_{i}:=(i \cdot i+1)\right\}$
(3) $f(12),(12 \ldots n)\}$
even/odd permutations

$$
\| \begin{array}{ll}
\operatorname{sgn}: & \sin \longrightarrow Z_{2} \\
\phi & \longmapsto \sin (\phi) \in\{ \pm 1\}
\end{array}
$$

(1) $\phi=\tau_{1} \cdots \tau_{+} \in S_{n} \quad \tau_{i}=$ cycles

$$
\operatorname{sgn}(\phi)=(-1)^{n-t}
$$

(2) $\operatorname{sgn}\left(\sigma_{1}\right)=-1 \quad \sigma_{1}=(12)$
(3) product of Transpositson \& permutation

$$
\begin{aligned}
& \frac{\operatorname{sgn}(\sigma \phi)}{}=-\operatorname{sgn}(\phi) \\
& \sigma=(i j)
\end{aligned}
$$

(a) $(i j)\left(i a_{1} a_{2} \cdots a_{k} j b_{1} b_{2} \cdots b_{l}\right)=\left(i a_{1} a_{2} \cdots a_{k}\right)\left(j b_{1} \cdots b_{l}\right)$

$$
\left\{\begin{array}{l}
i \mapsto a_{1} \rightarrow a_{1} \\
a_{i} \mapsto a_{i+1} \mapsto a_{i+1} \\
a_{k} \mapsto j \mapsto i
\end{array}\right.
$$

$$
a_{k} \mapsto j \mapsto i
$$

$$
\left\{\begin{array}{l}
j \mapsto b_{1} \mapsto b_{1} \\
b_{i} \mapsto b_{i+1} \\
b_{l} \mapsto i \mapsto j
\end{array}\right.
$$

(ij).
(b.) $(i j)\left(i a_{1} \cdots a_{k}\right)\left(j b_{1} b_{2} \cdots b_{l}\right)=$ LHS f (a)
(6) $\operatorname{sgn}\left(\phi_{1} \phi_{2}\right)=\operatorname{sgn}\left(\phi_{1}\right) \operatorname{sgn}\left(\phi_{2}\right)$
(3) \rightarrow (6): $\phi_{1}=\sigma_{1} \sigma_{L} \cdots \sigma_{K}$
(4): (4) shows theat sgn is a homomorplasm

$$
\begin{aligned}
\text { sqn: } \quad S_{n} & \longrightarrow \mathbb{Z}_{2} \\
\phi & \longmapsto \operatorname{sqn}(\phi) \\
\left(\epsilon_{i j k}=\operatorname{sgn}(i j k)\right. & \text { in pleysics })
\end{aligned}
$$

Definition: The Alternating group $A_{n} \subset S_{n}$ is the subgroup of S_{n} of even permutations.

$$
s g n(\phi)=1 . \forall \phi \in A_{n}
$$

(1) odd is a subgroup?
(2)

$$
\begin{aligned}
& A_{2}=\{1\} \\
& |A \operatorname{An}|=\mid \operatorname{Sn} 1 / 2 \\
& A_{3}=\{1 .(123) \cdot(132)\} \\
& =n!/ 2 \\
& A_{4}=\leqslant 1 . \\
& 1 A_{\varphi} に 12 \\
& \left.\begin{array}{ll}
(123) & (132), \\
(124), & (142) \\
(134) & (143)
\end{array}\right\} 8 \\
& (234)(243) \\
& \text { (12) (34), (13)(24) } \\
& \text { (14) (23) \} }
\end{aligned}
$$

(3) A_{3} is Abelian $A_{3} \cong \mathbb{Z}_{3} \cong \mu_{3}$
A_{6} is not Abelian.

$$
\begin{aligned}
& (123)(126)=(13)(24) \\
& (124)(123)=(14)(23)
\end{aligned}
$$

- Symmetric group \& braiding group $\phi \in S_{n}$:

(1) $\tilde{\sigma}_{i} \tilde{\sigma}_{j}=\tilde{\sigma}_{j} \hat{\sigma}_{i} \quad(|i-j| \geqslant 2)$
(2) $\tilde{\sigma}_{i} \tilde{\sigma}_{i-1} \tilde{\sigma}_{i}=\tilde{\sigma}_{i+1} \tilde{\sigma}_{i} \tilde{\sigma}_{i+1}$
\uparrow

defference between σ_{i} \& $\hat{\sigma}_{i}$

$$
\sigma_{i}^{2}=1 \quad \hat{\sigma}_{i}^{2} \neq 1
$$

$$
\begin{aligned}
& S_{n}=\left\langle\sigma_{1} \cdots \sigma_{n-1}\right| \sigma_{i} \sigma_{j} \sigma_{i}^{-1} \sigma_{j}^{-1}=1,|i-j| \geqslant 2 \\
& \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} . \\
& \sigma_{i}^{2}=1> \\
& B_{n}=\left\langle\tilde{\sigma}_{1} \cdots \tilde{\sigma}_{n-1}\right| \tilde{\sigma}_{i} \tilde{\sigma}_{j} \tilde{\sigma}_{i}^{-1} \tilde{\sigma}_{j}^{-1}=1 . \quad|i-j| \geqslant 2 \\
& \\
& \\
& \left.\tilde{\sigma}_{i} \tilde{\sigma}_{i-1}, \tilde{\sigma}_{i}=\tilde{\sigma}_{i+1} \tilde{\sigma}_{i} \tilde{\sigma}_{i-1}\right\rangle \quad\left(\tilde{\sigma}_{i}^{2} \neq 1\right)
\end{aligned}
$$

Topological fuantam computigy

$$
\begin{aligned}
\phi: B_{n} & \longrightarrow S_{n} \quad \text { homo. } \\
\tilde{\sigma}_{i} & \longmapsto \sigma_{i}
\end{aligned}
$$

6. Cosets and conjugary
6.1. Cosers and Lagrange theorem

Definition: Let HCG be a subgroup.
The set

$$
g H:=\{g h \mid h \in H\} \subset G
$$

is a left-coset of H.
(right-cosat $H g=s h z \mid h \in H\}$)
$g \in G$ is a representative of $g H(H 8)$

Example. (1) $G=2 . \quad H=n 2$

$$
\begin{array}{rl}
g+H & =\{g+n \cdot r \mid r \in \mathbb{Z}\} \\
= & \{i \mid i=g \bmod n\} \\
n=2 & H 8 H+1
\end{array}
$$

(2)

$$
\begin{gathered}
G=S_{3} \quad H=S_{2}=\{\underset{-}{1},(12)\} \subset S_{3} \\
S_{3}=S_{1},(121,(13),(23),(123),(132)\} \\
g H=1 \cdot H=H \\
(12) H=\{(1,2), 1\}=H \\
(13) H=\{(13),(123)\}
\end{gathered}
$$

$$
\begin{aligned}
(23) H & =\{(23),(132)\} \\
(123) H & =\{(123) \cdot(123)(12)=(13)\} \\
(132) H & =\{(132) \cdot(23)\} \Delta \\
{[L \neq R: H(123)} & =\{(123),(23)\} \neq(123) H]
\end{aligned}
$$

Observation: The (loft) corsets are either the same or disjoint.

Proof: suppose $g \in g_{1} H \cap g_{2} H$ then

$$
\begin{aligned}
& g=g_{1} h_{1}=g_{2} h_{2} \quad h_{i} \in H \\
& g_{1}=g_{2} h_{2} h_{1}^{-1}=g_{2} h \quad h=h_{2} h_{1}^{-1} \in H \\
& \Rightarrow g_{1} \cdot H=g_{2} H \quad\left(u_{0}+g_{1} \cdot h=g_{2} h\right)
\end{aligned}
$$

Left corsets define an equivalence relation.

$$
\begin{array}{r}
g_{1} \sim g_{2} \text { if } \exists h \in H \text { st. } g_{1}=g_{2} h \\
\left(g_{1} H=g_{2} H\right)
\end{array}
$$

Theorem (Lagrange): If H is a subgroup of a finite group G. then $|H|$ divides $|G|$.

Proof. $\left|g_{i} H\right|=|H| \quad \forall g_{i} \in G_{i}$, and $G=\bigcup_{i=1}^{m} g_{i}+1$, m is the number of distinct posers

$$
\Rightarrow|G|=m|H|
$$

Cowllang. if $|B|=P$ is a prime then G is a cyclic group.

$$
G \cong \mu_{p} \cong z_{p}
$$

Proof. pick a $g \in G$. st. $g \neq 1$

$$
\begin{aligned}
& H=\langle g\rangle=\left\{1, g, \delta^{2}-\right\} \\
&|H||G H \Rightarrow| H \mid=p \Rightarrow G=H .
\end{aligned}
$$

Corollay (Fermat's little theorem) a integer. P. prime

$$
a^{p}=a \bmod p
$$

Definition. G a group. It subgroup.

The set of left corsets in C is denoted t / H

It is the set of orbits under the right group action of H on G.

It is also referred to as a homogeneous speer.

The cardinality of G / H is the index of H in G denoted

$$
L G: H J \quad(=1 G+/(H))
$$

Example: 1. $G=S_{3} \quad H=S_{2}$

$$
\begin{aligned}
& G / H=\{H \cdot(123) H \cdot(132) H\} \\
& {[G: H]=6 / 2=3} \\
& \text { 2. } \left.G=\langle\omega) \omega^{2 N}=1\right\rangle \quad H=\left\langle\omega^{\prime} \mid \omega^{N}=1\right\rangle \\
& \omega=e^{i \frac{2}{N}} \quad \omega^{\prime}=e^{i \frac{22}{N}} \\
& {[\epsilon: H]=2 \quad G / H=\{H \cdot \omega H\}}
\end{aligned}
$$

3. $G=A_{6} \quad H=\{1 .(12)(34)\} \underline{\underline{U}} 2_{2}$

$$
[G: H]=6
$$

? is there an st. $[G: H J=2$?
if H exists. G/H $=\{H, g H\} \quad(H \pm g H)$

$$
(8 \notin H)
$$

(1) if $g^{2} H=q H \Rightarrow q H=H \Rightarrow g \in H \quad x$
(2) $g^{2} H=H \Rightarrow g^{2} \in H$
\Rightarrow regardless of $q \in H$ or not, $f^{2} \in H$. now consider 3 -cycles
$(123)(123)=(132) \Rightarrow 3$-cycle is the square of another 3-cycle
thine are 8 3-cycles in A_{4}

$$
\Rightarrow N_{0}|H|=6
$$

converse of Lagrange theorem is usually not true.

A special case:

Theorem (sylow's first theorem). Suppose p is prime and P^{k} divides $1 G H$ for $k \in N^{+}$

Then there is a subgroup of order p^{k}

Example

$$
\begin{aligned}
& \text { (1) } S_{3} \quad\left|S_{3}\right|=6=2 \times 3 \\
& 2=S_{2} \cong \mathbb{Z}_{2} \\
& 3=A 3 \underline{y} Z_{3} \\
& \text { (2) }|R|=8=2^{3} \\
& |H|=2=\{ \pm 1\} \\
& |H|=4:\{1,-1, i,-i\} \\
& |H|=8 \quad \begin{array}{l}
j,-j \\
\\
\mid H,-k
\end{array}
\end{aligned}
$$

6.2 conjugacy

Definition .(a) a group element h is conjugate to h^{\prime}

$$
\exists g \in G \text { s.t. } h^{\prime}=g h g^{-1}
$$

(b) conjugacy defines an equivalence relation. The equivalence class is called the conjugacy class (of h)

$$
C(h):=\left\{g h g^{-1}: \forall g \in G\right\}\left(=\cdot h^{*}\right)
$$

(c) $H C G$ is a subgroup its conjugare
$H^{g}:=g H g^{-1}=\left\{g h g^{-1}: h \in H\right\}$ is also a subgroup
(1) $e \in H^{2} \quad g e g^{-1}=e$
(2) $\left(g h_{1} g^{-1}\right)\left(g h_{2} g^{-1}\right)=g\left(h_{1} h_{2}\right) g^{-1} \in H^{\&}$
(3) $I\left(g h, g^{-1}\right)=g h_{1}^{-1} g^{-1} \in H^{\alpha}$

