Recap
1.

$$
\begin{aligned}
& G=\langle x\rangle \\
& Z_{N}=\left\langle A \mid A^{N}=1\right\rangle \cong \mu_{N} \\
& V \cong D_{2} \quad\left\langle A . B \mid A^{2}=B^{2}=(A B)^{2}=1\right\rangle
\end{aligned}
$$

2. horusnorphism / isomorplism.

$$
\begin{gathered}
\varphi: G \longrightarrow G^{\prime} \\
\varphi\left(z_{1} \cdot g_{2}\right)=\varphi\left(z_{7} \cdot \varphi\left(z_{2}\right)\right. \\
G \times G \xrightarrow{m} G \\
\varphi \times \varphi \downarrow \\
G^{\prime} \times G^{\prime} \xrightarrow{m} \downarrow \\
\varphi: G \rightarrow H
\end{gathered}
$$

3. $\left.\operatorname{ker} \varphi=\xi \& \in G: \varphi(子)=1_{H}\right\} \quad C G_{t}$

$$
\operatorname{im\varphi } \varphi=\varphi(\Leftrightarrow) c H
$$

4. $\operatorname{su}(2) \longleftrightarrow \operatorname{Sol}(3)$

$$
\begin{aligned}
& R: \operatorname{Su}(2) \rightarrow \operatorname{GL}(3, \mathbb{R}) \\
& \mathbb{R}^{3} \xrightarrow{R(u)} \mathbb{R}^{3} \\
& h \cdot R(u)=C_{n} \cdot k \\
& n \downarrow \quad \downarrow h \\
& (R(u) \cdot \vec{x}) \cdot \vec{\sigma}=u \vec{x} \cdot \vec{\sigma} u^{f} \\
& H_{2}{ }^{\circ} \longrightarrow H_{2}{ }^{\circ} \\
& C_{u} \quad(n \in S u(2))
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{ker} R=\{ \pm 1\} \cong R_{2} \quad R(u) \\
& \in S O(s) \\
& R(u)=R(-u)
\end{aligned}
$$

Example. GL (U) and $G L(n, k)$

Let $G L(U): V \rightarrow V$ be the group f invertible linear mansformarions with a finite dimensional vector space V.
Given an ordered basis $b=\left\{\hat{e}_{1}, \cdots \hat{e}_{n}\right\}$
Define a homomorphism:

$$
\begin{aligned}
& \varphi_{b}: G L(v) \longrightarrow G L(n, k) \\
& \tau \longrightarrow T_{b}(\tau) \\
& \forall \vec{\theta} \in V . \vec{v}=\sum_{i=1}^{n} v_{i} \hat{e}_{i} \quad\left(v_{i} \in k\right) \\
& \tau \vec{v}=\sum_{i=1}^{n} v_{i}\left(\tau \hat{e}_{i}\right)=\sum_{i j} \hat{e}_{j} \cdot T_{b}(\tau)_{j i} v_{i} \\
& \Rightarrow \tau_{1}\left(\tau_{2} \vec{v}\right)=T_{i j}^{2}(\tau)_{j i}\left(\tau_{1} \cdot \hat{e}_{j}\right) T_{b}\left(\tau_{2}\right)_{j i} v_{i} \\
&=\sum_{i j k} \hat{e}_{k} \cdot T_{b}\left(\tau_{1}\right)_{k j} T_{b}\left(\tau_{2}\right)_{j i} v_{i} \\
&=\sum_{i k} \hat{e}_{k} \tau T_{b}\left(\tau_{1}\right) T_{b}\left(\tau_{2} J_{k i} v_{i}\right. \\
& \equiv\left(\tau_{1} \tau_{2}\right) \vec{v}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i k} \hat{e}_{k}\left[T_{b}\left(\tau_{1} \tau_{2}\right)\right]_{k i} v_{i} \\
\Rightarrow T_{6}\left(\tau_{1} \tau_{2}\right) & =T_{3}\left(\tau_{1}\right) T_{b}\left(\tau_{2}\right)
\end{aligned}
$$

surjective
injective? $\tau\left(\hat{e}_{i}\right)=e_{i} \Leftrightarrow \tau=i d$
介

$$
T_{1}(\tau)=1_{n}
$$

isomorphism $\quad G L(U) \underline{U} G L(n . k)$

Definition.
(1) Let G be a group. Then a finite dimensional representation of B is a finite dimensional vector space V with a group homomorphism $\varphi: G \longrightarrow G L(U)$

V: carrier space
(2) A matrix representation of G is a homomorphism

$$
\begin{aligned}
& \varphi: G \longrightarrow G L(n, k) \quad(K=\mathbb{R}, \mathbb{C}) \\
& g \longmapsto P(q) \\
&- \\
& \forall \delta_{1} \cdot \delta_{2} \in G: P\left(\xi_{1} \delta_{2}\right)=P\left(\xi_{1}\right) P\left(\xi_{2}\right)
\end{aligned}
$$

$D+a_{n}$ ordered basis $\rightarrow 2(G L(V) \cong G L(n, k))$
matrix rep. is basis dependent

$$
\begin{aligned}
\hat{e}_{i} & =\sum_{j=1}^{n} s_{j i} \hat{Q}_{j}^{\prime} \\
P^{\prime}(8) & =s P(q) s^{-1}
\end{aligned}
$$

Definition (equivalent representation) Γ, P^{\prime} are n-dim reps of G_{t}
Γ. Γ^{\prime} are equivalent $\left(\boldsymbol{\sim} \underline{\sim} \Gamma^{\prime}\right)$ if $\exists S \in G L(u, k)$ sit. $\forall q \in G \quad P^{\prime}(q)=S T(q) S^{-1}$

Example 2. $\mathbb{R} \cdot \mathbb{C} . \Rightarrow a$

$$
\begin{aligned}
& P(a)=\left(\begin{array}{ll}
1 & 0 \\
a & 1
\end{array}\right) \\
& \Gamma(a) \Gamma(b)=\left(\begin{array}{ll}
1 & 0 \\
a & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
a+b & 1
\end{array}\right)
\end{aligned}
$$

Example. $S_{2}=\{e, \sigma\} \quad \sigma^{2}=e$

$$
\begin{aligned}
& \rho_{2} \cong \mu_{2} \cong Z_{2} \\
& P(e)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad, \quad \Gamma(\sigma)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \Gamma\left(\sigma^{2}\right)=P(\sigma) \cdot \Gamma(\sigma)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mu_{3}=\left\langle\omega \mid \omega^{3}=1\right\rangle \\
& \Gamma(e)=1_{3} \\
& \Gamma(\omega)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \\
& \Gamma\left(\omega^{2}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Example $\quad D_{4}=\left\langle a, b \mid a^{4}=b^{2}=(a b)^{2}=1\right\rangle \quad v$

$$
\left|D_{6}\right|=8
$$

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right) \\
C & =A B=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
P\left(D_{6}\right) & =S \pm \mathbb{1}, \pm A, \pm B, \pm C\}
\end{aligned}
$$

isomorphism: faithful representation
not faithful. $P(A)=P(B)=11$
4. Group actions on sets

Definition: Given a set X. the set of permutations

$$
S_{x}:=\{x \xrightarrow{f} x: f: 1-1 \& \text { onto (invertible) }\}
$$

is a group under composition.
f

Defiwton. A (left) group action Φ of E is a homomorphism

$$
\Phi: \theta \longrightarrow S_{x} \quad \phi(8, \cdot): x \rightarrow x
$$

$$
g \longmapsto \phi(q, \cdot)
$$

$$
x \longmapsto \phi(8, x)
$$

$$
1 \phi: G \times X \rightarrow X \quad \phi(\& x) \in X \quad(\forall x \in X)
$$

$$
\phi\left(q_{1}, \phi\left(q_{2}, x\right)\right)=\phi\left(g, q_{2}, x\right)
$$

$$
\begin{aligned}
& \forall\left(1_{G}, x\right)=x \quad(\forall x \in X) \\
& \phi\left(q, \phi\left(\xi^{-1}, x\right)\right)=\phi\left(z, z^{-1}, x\right)=\phi\left(1_{G}, x\right)=x
\end{aligned}
$$

simplified notation. $g \cdot x==\phi(g, x)$

$$
z_{1} \cdot\left(q_{2} \cdot x\right)=\left(q_{1}, q_{2}\right) \cdot x \quad(\forall x \in x)
$$

$$
\begin{aligned}
& m\left(f_{1}, f_{2}\right):=f_{1} \cdot f_{2} \\
& \times \underset{f_{2}}{\stackrel{f_{2}}{\rightleftarrows}} \times \underset{f_{1}^{-1}}{\stackrel{f_{1}}{\rightleftarrows}} x \\
& \underbrace{f_{1}}_{f_{1} \cdot f_{2}}
\end{aligned}
$$

Definition : If a set X hes a group action by A we say that x is a G-set.

Example 1. $X=E$.
(1) group action by multiplication

$$
\begin{aligned}
& x \in X=G \\
& g_{1} \cdot\left(g_{2} x\right)=g g_{2} x=\left(g_{1} g_{2}\right) x
\end{aligned}
$$

(2) group action by conjugation

$$
g \cdot x:=g \times g^{-1} \in G=x
$$

a. $g_{1} \cdot\left(g_{2} x\right)=g_{1}\left(g_{2} \times g_{2}\right)=g_{1} g_{2} \times g_{2}^{-1} g_{1}^{-1}$

$$
=\left(g_{1} g_{2}\right) \cdot x
$$

b. $e \cdot x=e x e^{-1}=x$

Abelion soup. $f \cdot x=g \lambda g^{-1}=x \quad(\forall g \in G$.
2. $G\left((n, k)\right.$ acts on k^{n}.

$$
\begin{aligned}
A \cdot \vec{v} & =\sum_{j} A_{i j} v_{j} \\
e & =\mathbb{1}_{n}
\end{aligned}
$$

a rep. of $G . \quad \Rightarrow$ group carabin on carrier space V.
3. Space group action on \mathbb{R}^{3}
$\{ま \| \tau\} \quad g \in O(3)$
$\tau \in T$ translation

$$
\begin{aligned}
\left\{R_{g} \mid \vec{\tau}\right\} \cdot \underline{r}:= & R_{g} \vec{r}+\vec{r} \quad R_{g} \in O(3) \\
\left\{R_{1} \mid \vec{\tau}_{1}\right\}\left\{R_{2} \mid \vec{\tau}_{2}\right\} \cdot \vec{r} & =\left\{R_{1} \mid \vec{\tau}_{1}\right\}\left(R_{2} \vec{r}+\vec{\tau}_{2}\right) \\
& =R_{1}\left(R_{2} \vec{r}+\vec{\tau}_{2}\right)+\vec{\tau}_{1} \\
& =\left\{R_{1} R_{2} \mid R_{1} \vec{\tau}_{2}+\vec{\tau}_{1}\right\} \cdot \vec{r}
\end{aligned}
$$

matrix rep.

$$
\begin{aligned}
\{z \mid \vec{\tau}\}= & \left(\frac{1}{\vec{\tau} \mid R_{z}}\right)_{3}^{1} \\
\left\{R_{1} \mid \overrightarrow{\tau_{1}}\right\}\left\{R_{2} \mid \overrightarrow{\tau_{2}}\right\} & =\left(\begin{array}{cc}
1 & 0 \\
\tau_{1} & R_{1}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\tau_{2} & R_{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
R_{1} \tau_{2}+\tau_{1} & R_{1} R_{2}
\end{array}\right) \\
& =\left\{R_{1} R_{2} \mid R_{1} \vec{\tau}_{2}+\vec{\tau}_{1}\right\}
\end{aligned}
$$

4. $\quad S u(2) \times S u(2) \rightarrow S=(4)$

$$
\begin{aligned}
& \mu_{x}=x^{\mu} \tau_{\mu} \\
&=x^{0} \cdot 1+i \vec{x} \cdot \vec{\sigma} \\
&=\left(\begin{array}{cc}
x^{0}+i x^{3} & i x^{\prime}+x^{2} \\
i x^{\prime}-x^{2} & x^{0}-i x^{3}
\end{array}\right) \\
&=\left\{\mu \in \mu_{2}(\mathbb{G}): \quad \sigma_{\mu}, i \sigma^{2} \cdot i \sigma^{3}\right\} \\
&\left.\mu^{*}=\sigma_{2} \mu \sigma_{2}\right\}
\end{aligned}
$$

$\operatorname{det} \mu_{x}=|x|^{2}:$ metric in \mathbb{R}^{4}.

Define loft action $S u(2, x S u(2)$:

$$
M \longrightarrow u_{1} M u_{2}^{-1}
$$

We thus define a homomorphism

$$
R: \operatorname{su}(2) \times \operatorname{su}(2) \rightarrow s o(4)
$$

Ger $R \cong 2_{2}=\{(1,1),(-1,-1)\}$

Definition (Orbits). Let X be a G-ser the orbit of G through a point $x \in X$. is the set

$$
\begin{aligned}
O_{G}(x) & :=\{g \cdot x \mid \forall g \in G\} \\
& =\{y \in x: \exists \& . \text { s.t. } y=\& \cdot x\}
\end{aligned}
$$

This defines an equivalence relation "i"

$$
(x \sim x ; x \sim y \Leftrightarrow y \sim x ; \quad x \sim y . y \sim z \Rightarrow x \sim z)
$$

$D_{G}(x)$ are equivalence classes $\left.(\tau x\rangle\right)$ under group action.

Distinct orbits of E partition X :
(1) $\forall x(\in X) \in O_{G}(x)$
(2) If $O_{G}\left(x_{1}\right) \cap O_{G}\left(x_{2}\right) \ni x \Rightarrow O_{G}\left(x_{1}\right)=O_{G}\left(x_{2}\right)$

$$
\left(x=g_{1} \cdot x_{1}=g_{2} x_{2} \quad x_{1}=z_{1}^{-1} \cdot g_{2} \cdot x_{2}\right)
$$

$\Rightarrow X$ is covered by disjoint orbits.

The set of orbits is denoted as X / G

Examples.

1. $G=\operatorname{SO}(2, R)$, on \mathbb{R}^{2}

$$
\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)\binom{x}{y}=\binom{x^{\prime}}{y^{\prime}}=\binom{x \cos \phi-y \sin \phi}{x \sin \phi+y \cos \phi}
$$

$$
\mathbb{R}^{2} / s_{0}(2)=[0,+\infty)
$$

2. $G=C_{3}=\{R(0), R(2 \pi / 3), R(4 \pi / 3)\} \underline{\underline{n}} Z_{3}$

$$
\operatorname{CSO}(2, R)
$$

X : eq lat. triangle

26. Space group $\{R / \tau\}$ ea f orbits are "Wyckoff position".
3. $G=G L(n \cdot k) . \quad X=k^{n} \quad n$-dim vector space over k.
orbits: $O_{0}=\{\overrightarrow{0}\}$

$$
O_{*}=\left\{\vec{x} \in k^{n}\{\vec{x} \neq \overrightarrow{0}\}\right.
$$

Quantum mechanics: " $\varphi \in H$ ".
ray: $\varphi \sim c \varphi \quad(\forall c \in C)$

$$
\mathbb{C}^{*}=\mathbb{C}-\{0\} \quad \mathbb{C}^{n}-\{\overrightarrow{0}\} / \mathbb{C}^{*}=\mathbb{C} p^{n-1}
$$

4. $G=\langle g\rangle \cong$ 亿 $\quad 2=\langle 1\rangle$

$$
O_{x}=\left\{f^{n} \cdot x, n \in \mathbb{R}\right\}
$$

2 on R :

$$
\mathbb{R} / \mathbb{Z}=[0,1) \sim 5^{1}
$$

5. $G_{1}=\mathbb{Z}_{2}=\{e \cdot \sigma\}$ on R^{n+1}

$$
\begin{aligned}
& \sigma \cdot\left(x^{1}, x^{2},-x^{n+1}\right)^{\top}=\left(x^{1},-x^{p},-x^{p+1}, \cdots,-x^{p+8}\right)^{\top} \\
& (p+q=n+1)
\end{aligned}
$$

under the group action $I_{i}\left(x^{i}\right)^{2}-1=0$ is preserved
(1) $\quad p=0, \frac{8}{8}=n+1$

$$
\begin{aligned}
\sigma \cdot \vec{x} & =-\vec{x} \\
s^{\prime} / 2_{2} & =q^{\sigma^{\prime} y}=S^{\prime}=R P^{\prime}
\end{aligned}
$$

$$
\underbrace{A}_{C} \neq \underbrace{B=C}_{D=A}
$$

$$
\begin{gathered}
R P^{\prime}=S^{1} \\
R P^{n} \neq S^{n} \\
(u \geqslant 2) \\
S^{2} / \mathbb{R}_{2}=R P^{2}
\end{gathered}
$$

$$
S^{n} / \mathbb{Z}_{2}=R P^{n}
$$

(a)

Figure 2.5. The Klein bottle (a) and the projective plane (b). ($R P^{2}$)

Source: p73 of Nakahara, Geometry, topology and physics

