Problem 28

Let V^{+}, V^{-}, and V^{2} denote the trivial, sign, and the two-dimensional standard irreps of S_{3}, respectively. Show that
(a) $V^{+} \otimes V^{\mu} \cong V^{\mu}$
(b) $V^{-} \otimes V^{-} \cong V^{+}$
(c) $V^{-} \otimes V^{2} \cong V^{2}$
(d) $V^{2} \otimes V^{2} \cong V^{+} \oplus V^{-} \oplus V^{2}$

Problem 29

Consider the two-dimensional coupled harmonic oscillator depicted below, where the three "atoms" (point masses) can move in plane while keeping their center of total mass fixed. Its symmetry is described by D_{3}. Look up the character table of point group D_{3} online or in textbooks. One example can be found at link here ${ }^{1}$.

The vectors of displacements of atoms from their equilibrium positions, $\psi=\left(\delta x_{1}, \delta y_{1}\right.$, $\left.\delta x_{2}, \delta y_{2}, \delta x_{3}, \delta y_{3}\right)^{T}$, span a representation space for D_{3}. Determine the character of each conjugacy class under this representation, and find its isotypic decomposition into irreps.

[^0]
[^0]: ${ }^{1}$ http://symmetry.jacobs-university.de/cgi-bin/group.cgi?group=303\&option=4

