Problem 28

Let V^+ , V^- , and V^2 denote the trivial, sign, and the two-dimensional standard irreps of S_3 , respectively. Show that

- (a) $V^+ \otimes V^\mu \cong V^\mu$
- (b) $V^- \otimes V^- \cong V^+$
- (c) $V^- \otimes V^2 \cong V^2$
- (d) $V^2 \otimes V^2 \cong V^+ \oplus V^- \oplus V^2$

Problem 29

Consider the two-dimensional coupled harmonic oscillator depicted below, where the three "atoms" (point masses) can move in plane while keeping their center of total mass fixed. Its symmetry is described by D_3 . Look up the character table of point group D_3 online or in textbooks. One example can be found at link here¹.

The vectors of displacements of atoms from their equilibrium positions, $\psi = (\delta x_1, \delta y_1, \delta x_2, \delta y_2, \delta x_3, \delta y_3)^T$, span a representation space for D_3 . Determine the character of each conjugacy class under this representation, and find its isotypic decomposition into irreps.

¹http://symmetry.jacobs-university.de/cgi-bin/group.cgi?group=303&option=4