Problem 23 (Haar measure of $\operatorname{SU}(2))^{1}$

Recall that an element of $S U(2) g=\left(\begin{array}{cc}\alpha & \beta \\ -\beta^{*} & \alpha^{*}\end{array}\right)$ can be expressed using Euler angles with $\alpha=e^{\mathrm{i} \frac{1}{2}(\phi+\psi)} \cos \theta / 2$ and $\beta=\mathrm{i} e^{\mathrm{i} \frac{1}{2}(\phi-\psi)} \sin \theta / 2$
(a) Verify that $[d g]=\frac{1}{16 \pi^{2}} d \psi d \phi \sin \theta d \theta$ is the normalized Haar measure.
(b) Show that

$$
\begin{gathered}
\int_{S U(2)} d g g_{\alpha \beta}=0 \\
\int_{S U(2)} d g g_{\alpha \beta} g_{\gamma \delta}=\frac{1}{2} \epsilon_{\alpha \gamma} \epsilon_{\beta \delta} .
\end{gathered}
$$

ϵ here is the Levi-Civita / totally antisymmetric tensor. In $2 \mathrm{D}, \epsilon=\mathrm{i} \sigma_{2}$.
(c) Using left and right-invariance show that

$$
\int_{S U(2)} d g g_{\alpha_{1} \beta_{1}} \cdots g_{\alpha_{n} \beta_{n}}
$$

can be nonzero if n is even and half of the α 's $(\beta$'s) are 1 .

Problem 24

Find three different irreps for S_{3}. (Hint: two are one dimensional and one two dimensional.)

[^0]
[^0]: ${ }^{1} \mathrm{pp} .236-237$ of [GM]

