Problem 20 (Real representation) ${ }^{1}$

Let V be a complex vector space. The complex conjugate representation sends $g \rightarrow$ $\bar{T}(g) \in G L(\bar{V})$. If $\left\{v_{i}\right\}$ is an ordered basis for V then there is a canonical ordered basis $\left\{\bar{v}_{i}\right\}$ for \bar{V}.

A real representation is one where (\bar{T}, \bar{V}) is equivalent to (T, V). Show that for a real representation T, there exists $S \in G L(n, \mathbb{C})$ s.t. $\forall g \in G$,

$$
M_{T}^{*}(g)=S M_{T}(g) S^{-1}
$$

Problem $21{ }^{2}$

Let $V=\mathbb{C}^{n}$ and $W=\mathbb{C}^{m}$ be representation spaces for G. The vector space of linear transformations from V to W, denoted $\operatorname{Hom}(V, W)$ is also a representation, via the identification $\operatorname{Hom}(V, W)=V^{*} \otimes W$. Define

$$
(\tilde{T}(g) \cdot \phi)(v)=T_{W}(g) \cdot \phi\left(T_{V}\left(g^{-1}\right) v\right)
$$

for $\phi \in \operatorname{Hom}(V, W)$ and $v \in V$.
(1) Verify that it is indeed a representation.
(2) Show that the dual representation is a special case of this representation.
(3) Equip V with basis $\left\{e_{i}\right\}$ and W with basis $\left\{e_{a}\right\}$. Identify $\operatorname{Hom}(V, W) \cong M a t_{m \times n}(\mathbb{C})$, show that

$$
\tilde{T}(g) e_{a i}=M_{b a}(g)\left(M(g)^{t r,-1}\right)_{k i} e_{b k},
$$

where $e_{i j}$ are the unit matrices (1 at $\{i, j\}, 0$ otherwise).

Problem 22

For a representation (T, V) of a finite group G on an inner product space V. Define an inner product s.t.

$$
\langle T(g) v, T(g) w\rangle=\langle v, w\rangle, \quad \forall v, w \in V, \forall g \in G .
$$

[^0]
[^0]: ${ }^{1}$ p. 228 of [GM]
 ${ }^{2}$ p. 229 of [GM]

